Previous |  Up |  Next

Article

Title: A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$ (English)
Author: Zhao, Yuan-e
Author: Wang, Tingting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 381-389
Summary lang: English
.
Category: math
.
Summary: Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$. (English)
Keyword: generalized Ramanujan-Nagell equation
Keyword: number of solution
Keyword: upper bound
MSC: 11D61
idZBL: Zbl 1265.11066
idMR: MR2990183
DOI: 10.1007/s10587-012-0036-3
.
Date available: 2012-06-08T09:40:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142835
.
Reference: [1] Bauer, M., Bennett, M. A.: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation.Ramanujan J. 6 (2002), 209-270. Zbl 1010.11020, MR 1908198, 10.1023/A:1015779301077
Reference: [2] Beukers, F.: On the generalized Ramanujan-Nagell equation II.Acta Arith. 39 (1981), 113-123. Zbl 0377.10012, MR 0639621, 10.4064/aa-39-2-113-123
Reference: [3] Le, M. H.: On the generalized Ramanujan-Nagell equation $x^2-D=p^n$.Acta Arith. 58 (1991), 289-298. MR 1121088, 10.4064/aa-58-3-289-298
Reference: [4] Le, M. H.: On the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$.Publ. Math. Debrecen. 45 (1994), 239-254. MR 1315938
Reference: [5] Le, M. H.: Upper bounds for class numbers of real quadratic fields.Acta Arith. 68 (1994), 141-144. Zbl 0816.11055, MR 1305196, 10.4064/aa-68-2-141-144
Reference: [6] Mordell, L. J.: Diophantine Equations.London, Academic Press. (1969). Zbl 0188.34503, MR 0249355
Reference: [7] Siegel, C. L.: Approximation algebraischer Zahlen.Diss. Göttingen, Math. Zeitschr. 10 (1921), 173-213 German. MR 1544471, 10.1007/BF01211608
.

Files

Files Size Format View
CzechMathJ_62-2012-2_6.pdf 244.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo