Previous |  Up |  Next

Article

Title: On the Cauchy problem for linear hyperbolic functional-differential equations (English)
Author: Lomtatidze, Alexander
Author: Šremr, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 391-440
Summary lang: English
.
Category: math
.
Summary: We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature. (English)
Keyword: functional-differential equation of hyperbolic type
Keyword: Cauchy problem
Keyword: Fredholm alternative
Keyword: well-posedness
Keyword: existence of solutions
MSC: 35A01
MSC: 35A02
MSC: 35B30
MSC: 35L10
MSC: 35L15
idZBL: Zbl 1265.35195
idMR: MR2990184
DOI: 10.1007/s10587-012-0037-2
.
Date available: 2012-06-08T09:42:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142836
.
Reference: [1] Bielawski, D.: On the set of solutions of boundary value problems for hyperbolic differential equations.J. Math. Anal. Appl. 253 (2001), 334-340. Zbl 0966.35080, MR 1804580, 10.1006/jmaa.2000.7118
Reference: [2] Carathéodory, C.: Vorlesungen über Reelle Funktionen.Leipzig und Berlin: B. G. Teubner (1918), German.
Reference: [3] Deimling, K.: Absolutely continuous solutions of Cauchy's problem for $u_{xy}=f(x,y,u, u_x,u_y)$.Ann. Mat. Pura Appl., IV. Ser. 89 (1971), 381-391. MR 0330809, 10.1007/BF02414955
Reference: [4] Deimling, K.: Das Picard-Problem für $u_{xy}=f(x, y, u, u_x, u_y)$ unter Carathéodory-Voraussetzungen.Math. Z. 114 (1970), 303-312 German. MR 0262643, 10.1007/BF01112700
Reference: [5] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.New York and London: Interscience Publishers. XIV (1958). Zbl 0084.10402, MR 0117523
Reference: [6] Grigolia, M.: On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type.Mem. Differ. Equ. Math. Phys. 16 (1999), 154-158. Zbl 0940.35201, MR 1691354
Reference: [7] Grigolia, M. P.: On a generalized characteristic boundary value problem for hyperbolic systems.Differ. Uravn. 21 (1985), 678-686.
Reference: [8] Kharibegashvili, S.: Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems.Mem. Differ. Equ. Math. Phys. 4 (1995), 127 p. Zbl 0870.35001, MR 1415805
Reference: [9] Kiguradze, T.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type.Mem. Differ. Equ. Math. Phys. 1 (1994), 144 p. Zbl 0819.35003, MR 1296228
Reference: [10] Kiguradze, T. I.: On periodic boundary value problems for linear hyperbolic equations. I.Differ. Equations 29 (1993), 231-245, translation from Differ. Uravn. 29 281-297 (1993). MR 1236111
Reference: [11] Kiguradze, T. I.: Periodic boundary value problems for hyperbolic equations. II.Differ. Equations 29 (1993), 542-549, translation from Differ. Uravn. 29 637-645 (1993). Zbl 0849.35067, MR 1250721
Reference: [12] Lakshmikantham, V., Pandit, S. G.: The method of upper, lower solutions and hyperbolic partial differential equations.J. Math. Anal. Appl. 105 (1985), 466-477. Zbl 0569.35056, MR 0778480, 10.1016/0022-247X(85)90062-9
Reference: [13] Mitropol'skij, Yu. A., Urmancheva, L. B.: On two-point problem for systems of hyperbolic equations.Ukr. Math. J. 42 (1990), 1492-1498, translation from Ukr. Mat. Zh. 42 1657-1663 (1990). MR 1098465
Reference: [14] Natanson, I. P.: Theory of Functions of Real Variable.Nauka, Moscow (1974), Russian. MR 0354979
Reference: [15] Schaefer, H. H.: Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II.Isr. J. Math. 13 (1972), 400-415. MR 0333754
Reference: [16] Šremr, J.: Absolutely continuous functions of two variables in the sense of Carathéodory.Electron J. Differ. Equ. 2010 (2010) 11 p. Zbl 1200.26016, MR 2740595
Reference: [17] Tolstov, G. P.: On the mixed second derivative.Mat. Sb., N. Ser. 24 (1949), 27-51 Russian. MR 0029971
Reference: [18] Tricomi, F. G.: Lezioni Sulle Equazioni a Derivate Parziali. Corso di Analisi Superiore.Editrice Gheroni, Torino (1954), Italian. Zbl 0057.07502, MR 0067293
Reference: [19] Vejvoda, O.: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I.Czech. Math. J. 14 (1964), 341-382. MR 0174872
Reference: [20] al., O. Vejvoda et: Partial Differential Equations.SNTL, Praha (1981).
Reference: [21] Walczak, S.: Absolutely continuous functions of several variables and their application to differential equations.Bull. Pol. Acad. Sci., Math. 35 (1987), 733-744. Zbl 0691.35029, MR 0961712
Reference: [22] Walter, W.: Differential and Integral Inequalities. Translated by Lisa Rosenblatt and Lawrence Shampine.Ergebnisse der Mathematik und ihrer Grenzgebiege. Band 55. Berlin-Heidelberg-New York: Springer-Verlag (1970). Zbl 0252.35005, MR 0271508
.

Files

Files Size Format View
CzechMathJ_62-2012-2_7.pdf 465.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo