Previous |  Up |  Next

Article

Title: A very general covering property (English)
Author: Lipparini, Paolo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 281-306
Summary lang: English
.
Category: math
.
Summary: We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5). We discuss corresponding notions related to sequential compactness, and to pseudocompactness, or, more generally, properties connected with the existence of limit points of sequences of subsets. In spite of the great generality of our treatment, many results here appear to be new even in very special cases, such as $D$-compactness and $D$-pseudocompactness, for $D$ an ultrafilter, and weak (quasi) $M$-(pseudo)-compactness, for $M$ a set of ultrafilters, as well as for $[\beta ,\alpha ]$-compactness, with $\beta$ and $\alpha$ ordinals. (English)
Keyword: covering property
Keyword: subcover
Keyword: compactness
Keyword: accumulation point
Keyword: convergence
Keyword: pseudocompactness
Keyword: limit point
MSC: 54A20
MSC: 54D20
idZBL: Zbl 1265.54104
idMR: MR3017260
.
Date available: 2012-08-08T09:05:47Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142890
.
Reference: [1] Alexandroff P., Urysohn P.: Mémorie sur les éspaces topologiques compacts.Verh. Akad. Wetensch. Amsterdam 14 (1929), 1–96.
Reference: [2] Arens R., Dugundji J.: Remark on the concept of compactness.Portugaliae Math. 9 (1950), 141–143. Zbl 0039.18602, MR 0038642
Reference: [3] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.: Selections and suborderability.Fund. Math. 175 (2002), 1–33. Zbl 1019.54014, MR 1971236
Reference: [4] Caicedo X.: The abstract compactness theorem revisited.in Logic and Foundations of Mathematics (A. Cantini et al. editors), Kluwer Academic Publishers, Dordrecht, 1999, pp. 131–141. Zbl 0955.03044, MR 1739865
Reference: [5] Choquet C.: Sur les notions de filtre et de grille.C.R. Acad. Sci., Paris 224 (1947), 171–173. Zbl 0029.07602, MR 0018813
Reference: [6] Dow A., Porter J.R., Stephenson R.M., Woods R.G.: Spaces whose pseudocompact subspaces are closed subsets.Appl. Gen. Topol. 5 (2004), 243–264. Zbl 1066.54024, MR 2121792
Reference: [7] Engelking R.: General Topology.2nd edition, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Gaal L.S.: On the theory of $\mathbf (m,n)$-compact spaces.Pacific J. Math. 8 (1958), 721–734. MR 0099644, 10.2140/pjm.1958.8.721
Reference: [9] García-Ferreira S.: On FU($p$)-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolin. 32 (1991), 161–171. Zbl 0789.54032, MR 1118299
Reference: [10] García-Ferreira S.: Some generalizations of pseudocompactness.Papers on General Topology and Applications (Flushing, NY, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, pp. 22–31. Zbl 0911.54022, MR 1467759
Reference: [11] Garcia-Ferreira S.: On two generalizations of pseudocompactness.Proceedings of the 14th Summer Conference on General Topology and its Applications (Brookville, NY, August 4–8, 1999), Topology Proc. 24 (2001), 149–172. Zbl 1026.54017, MR 1876373
Reference: [12] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403–418. Zbl 0288.54020, MR 0380736, 10.2140/pjm.1975.57.403
Reference: [13] Glicksberg I.: Stone-Čech compactifications of products.Trans. Amer. Math. Soc 90 (1959), 369–382. Zbl 0089.38702, MR 0105667
Reference: [14] Good C.: The Lindelöf property.in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, Amsterdam, 2004, Chapter d-8, 182–184. MR 2049453
Reference: [15] Larson P.B.: Irreducibility of product spaces with finitely many points removed.Spring Topology and Dynamical Systems Conference, Topology Proc. 30 (2006), 327–333. Zbl 1128.54004, MR 2280675
Reference: [16] Lipparini P.: Compact factors in finally compact products of topological spaces.Topology Appl. 153 (2006), 1365–1382. Zbl 1093.54001, MR 2211205, 10.1016/j.topol.2005.04.002
Reference: [17] Lipparini P.: Some compactness properties related to pseudocompactness and ultrafilter convergence.Topology Proc. 40 (2012), 29–51. MR 2793281
Reference: [18] Lipparini P.: More generalizations of pseudocompactness.Topology Appl. 158 (2011), 1655–1666. Zbl 1239.54011, MR 2812474, 10.1016/j.topol.2011.05.039
Reference: [19] Lipparini P.: Ordinal compactness.submitted, preprint available at arXiv:1012.4737v2 (2011).
Reference: [20] Lipparini P.: Products of sequentially pseudocompact spaces.arXiv:1201.4832.
Reference: [21] Scheepers M.: Combinatorics of open covers. I. Ramsey theory.Topology Appl. 69 (1996), 31–62. Zbl 0848.54018, MR 1378387, 10.1016/0166-8641(95)00067-4
Reference: [22] Smirnov Y.M.: On topological spaces compact in a given interval of powers (Russian)., Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 155–178. MR 0035004
Reference: [23] Stephenson R.M., Jr.: Initially $\kappa $-compact and related spaces.in Handbook of Set-theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, Chapter 13, pp. 603–632. Zbl 0588.54025, MR 0776632
Reference: [24] Stephenson R.M., Jr.: Pseudocompact spaces.in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, B.V., Amsterdam, 2004, Chapter d-07, pp. 177–181. Zbl 0804.54004
Reference: [25] Vaughan J.E.: Some recent results in the theory of $[a,b]$-compactness.in TOPO 72–General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., 378, Springer, Berlin, 1974, pp. 534–550. Zbl 0297.54021, MR 0367928, 10.1007/BFb0068506
Reference: [26] Vaughan J.E.: Some properties related to $[a,b]$-compactness.Fund. Math. 87 (1975), 251–260. MR 0380732
Reference: [27] Vaughan J.E.: Countably compact and sequentially compact spaces.in Handbook of Set-theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, Chapter 12, pp. 569–602. Zbl 0562.54031, MR 0776631
Reference: [28] Vaughan J.E.: Countable compactness.in Encyclopedia of General Topology, edited by K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Science Publishers, Amsterdam, 2004, Chapter d-6, 174–176. Zbl 0984.54027, MR 2049453
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_9.pdf 616.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo