Previous |  Up |  Next

Article

Title: Metrization of function spaces with the Fell topology (English)
Author: Yang, Hanbiao
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 307-318
Summary lang: English
.
Category: math
.
Summary: For a Tychonoff space $X$, let $\downarrow {\rm C}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow {\rm C}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow {\rm C}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow {\rm C}_F(X)$ is metrizable but $X$ is not first-countable. (English)
Keyword: space of continuous maps
Keyword: Fell topology
Keyword: hyperspace
Keyword: metrizable
Keyword: hypograph
Keyword: separable
Keyword: first-countable
MSC: 54B20
MSC: 54C35
MSC: 54E45
idZBL: Zbl 1265.54093
idMR: MR3017261
.
Date available: 2012-08-08T09:06:56Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142891
.
Reference: [1] Beer G.: Topologies on Closed and Closed Convex Sets.MIA 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0792.54008, MR 1269778
Reference: [2] Kelly J.L.: General Topology.GTM 27, Springer, New York; Reprint of the 1955 ed. published by Van Nostrand, 1955. MR 0070144
Reference: [3] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4
Reference: [4] Yang Z.: The hyperspace of the regions below of continuous maps is homeomorphic to $c_0$.Topology Appl. 153 (2006), 2908–2921. Zbl 1111.54008, MR 2248393
Reference: [5] Yang Z., Fan L.: The hyperspace of the regions below of continuous maps from the converging sequence.Northeast Math. J. 22 (2006), 45–54. Zbl 1089.54006, MR 2208621
Reference: [6] Yang Z., Wu N.: The hyperspace of the regions below of continuous maps from S*S to I.Questions Answers Gen. Topology 26 (2008), 29–39. MR 2413994
Reference: [7] Yang Z., Wu N.: A topological position of the set of continuous maps in the set of upper semicontinuous maps.Science in China, Ser. A: Math. 52 (2009), 1815–1828. Zbl 1184.54013, MR 2530192, 10.1007/s11425-008-0152-6
Reference: [8] Yang Z., Zhang B.: The hyperspace of the regions below continuous maps with the Fell topology is homeomorphic to $c_0$.Acta Math. Sinica, English Ser. 28 (2012), 57–66. MR 2863750, 10.1007/s10114-012-0030-6
Reference: [9] Yang Z., Zhou X.: A pair of spaces of upper semi-continuous maps and continuous maps.Topology Appl. 154 (2007), 1737–1747. Zbl 1119.54010, MR 2317076, 10.1016/j.topol.2006.12.013
Reference: [10] Zhang Y., Yang Z.: Hyperspaces of the regions below of upper semi-continuous maps on non-compact metric spaces.Advances in Math. in China 39 (2010), 352–360 (Chinese). MR 2724454
Reference: [11] McCoy R.A., Ntanyu I.: Properties $ C(X)$ with the epi-topology.Bollettion U.M.I. (7)6-B(1992), 507–532. MR 1191951
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_10.pdf 528.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo