Title:
|
Metrization of function spaces with the Fell topology (English) |
Author:
|
Yang, Hanbiao |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
307-318 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a Tychonoff space $X$, let $\downarrow {\rm C}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow {\rm C}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow {\rm C}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow {\rm C}_F(X)$ is metrizable but $X$ is not first-countable. (English) |
Keyword:
|
space of continuous maps |
Keyword:
|
Fell topology |
Keyword:
|
hyperspace |
Keyword:
|
metrizable |
Keyword:
|
hypograph |
Keyword:
|
separable |
Keyword:
|
first-countable |
MSC:
|
54B20 |
MSC:
|
54C35 |
MSC:
|
54E45 |
idZBL:
|
Zbl 1265.54093 |
idMR:
|
MR3017261 |
. |
Date available:
|
2012-08-08T09:06:56Z |
Last updated:
|
2014-07-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142891 |
. |
Reference:
|
[1] Beer G.: Topologies on Closed and Closed Convex Sets.MIA 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0792.54008, MR 1269778 |
Reference:
|
[2] Kelly J.L.: General Topology.GTM 27, Springer, New York; Reprint of the 1955 ed. published by Van Nostrand, 1955. MR 0070144 |
Reference:
|
[3] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4 |
Reference:
|
[4] Yang Z.: The hyperspace of the regions below of continuous maps is homeomorphic to $c_0$.Topology Appl. 153 (2006), 2908–2921. Zbl 1111.54008, MR 2248393 |
Reference:
|
[5] Yang Z., Fan L.: The hyperspace of the regions below of continuous maps from the converging sequence.Northeast Math. J. 22 (2006), 45–54. Zbl 1089.54006, MR 2208621 |
Reference:
|
[6] Yang Z., Wu N.: The hyperspace of the regions below of continuous maps from S*S to I.Questions Answers Gen. Topology 26 (2008), 29–39. MR 2413994 |
Reference:
|
[7] Yang Z., Wu N.: A topological position of the set of continuous maps in the set of upper semicontinuous maps.Science in China, Ser. A: Math. 52 (2009), 1815–1828. Zbl 1184.54013, MR 2530192, 10.1007/s11425-008-0152-6 |
Reference:
|
[8] Yang Z., Zhang B.: The hyperspace of the regions below continuous maps with the Fell topology is homeomorphic to $c_0$.Acta Math. Sinica, English Ser. 28 (2012), 57–66. MR 2863750, 10.1007/s10114-012-0030-6 |
Reference:
|
[9] Yang Z., Zhou X.: A pair of spaces of upper semi-continuous maps and continuous maps.Topology Appl. 154 (2007), 1737–1747. Zbl 1119.54010, MR 2317076, 10.1016/j.topol.2006.12.013 |
Reference:
|
[10] Zhang Y., Yang Z.: Hyperspaces of the regions below of upper semi-continuous maps on non-compact metric spaces.Advances in Math. in China 39 (2010), 352–360 (Chinese). MR 2724454 |
Reference:
|
[11] McCoy R.A., Ntanyu I.: Properties $ C(X)$ with the epi-topology.Bollettion U.M.I. (7)6-B(1992), 507–532. MR 1191951 |
. |