Previous |  Up |  Next

Article

Title: Monotone modal operators on bounded integral residuated lattices (English)
Author: Rachůnek, Jiří
Author: Svoboda, Zdeněk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 333-345
Summary lang: English
.
Category: math
.
Summary: Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied. (English)
Keyword: residuated lattice
Keyword: bounded integral residuated lattice
Keyword: modal operator
Keyword: closure operator
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1265.03085
idMR: MR3112491
DOI: 10.21136/MB.2012.142898
.
Date available: 2012-08-19T21:29:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142898
.
Reference: [1] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices.Algebra Univers. 50 (2003), 83-106. Zbl 1092.06012, MR 2026830
Reference: [2] Balbes, R., Dwinger, P.: Distributive Lattices.University Missouri Press, Columbia (1974). Zbl 0321.06012, MR 0373985
Reference: [3] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer, Dordrecht (2000). Zbl 0937.06009
Reference: [4] Ciungu, L. C.: Classes of residuated lattices, Annals of University of Craiova.Math. Comp. Sci. Ser. 33 (2006), 180-207. MR 2359903
Reference: [5] DiNola, A., Georgescu, G., Iorgulesu, A.: Psedo-BL algebras; Part I.Multiple Val. Logic 8 (2002), 673-714. MR 1948853
Reference: [6] Dowker, C. H., Papert, D.: Quotient Frames and Subspaces.Proc. London Math. Soc. 16 (1966), 275-296. Zbl 0136.43405, MR 0202648
Reference: [7] Dvurečenskij, A.: Every linear pseudo BL-algebra admits a state.Soft Comput. 11 (2007), 495-501. Zbl 1122.06012, 10.1007/s00500-006-0078-2
Reference: [8] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded Rl-monoids.Math. Slovaca 56 (2006), 487-500. MR 2293582
Reference: [9] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated l-monoids.Discrete Math. 306 (2006), 1317-1326. MR 2237716, 10.1016/j.disc.2005.12.024
Reference: [10] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded Rl-monoids.Semigroup Forum 72 (2006), 191-206. MR 2216089, 10.1007/s00233-005-0545-6
Reference: [11] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms.Fuzzy Sets Syst. 124 (2001), 271-288. Zbl 0994.03017, MR 1860848
Reference: [12] Flondor, P., Georgescu, G., Iorgulescu, A.: Pseudo-t-norms and pseudo-BL algebras.Soft Comput. 5 (2001), 355-371. Zbl 0995.03048, MR 1948853, 10.1007/s005000100137
Reference: [13] Freyd, P. J.: Aspects of topoi.Bull. Austral. Math. Soc. 7 (1972), 1-76. Zbl 0252.18002, MR 0396714, 10.1017/S0004972700044828
Reference: [14] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics.Elsevier, Amsterdam (2007). Zbl 1171.03001, MR 2531579
Reference: [15] Georgescu, G., Iorgulescu, A.: Pseudo-$ MV$ algebras.Multiple Val. Logic 6 (2001), 95-135. Zbl 1014.06008, MR 1817439
Reference: [16] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht (1998). MR 1900263
Reference: [17] Harlenderová, M., Rachůnek, J.: Modal operators on $ MV$-algebras.Math. Bohem. 131 (2006), 39-48. Zbl 1112.06014, MR 2211002
Reference: [18] Jipsen, P., Tsinakis, C.: A Survey of Residuated Lattices.Ordered Algebraic Structures, Kluwer, Dordrecht (2006), 19-56. MR 2083033
Reference: [19] Kondo, M.: Modal operators on commutative residuated lattices.Math. Slovaca 61 (2011), 1-14. Zbl 1265.03081, MR 2772354, 10.2478/s12175-010-0055-1
Reference: [20] Lawvere, F. W.: Quantifiers and Sheaves.Actes Congr. internat. Math. 1 (1971), 329-334. Zbl 0261.18010, MR 0430021
Reference: [21] Lawvere, F. W.: Toposes, Algebraic Geometry and Logic.Lecture Notes 274, Springer, Berlin (1972). Zbl 0233.00005, MR 0330254
Reference: [22] Macnab, D. S.: Modal operators on Heyting algebras.Alg. Univ. 12 (1981), 5-29. Zbl 0459.06005, MR 0608645, 10.1007/BF02483860
Reference: [23] Rachůnek, J.: A non-commutative generalization of MV-algebras.Czech. Math. J. 52 (2002), 255-273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
Reference: [24] Rachůnek, J., Šalounová, D.: Modal operators on bounded commutative residuated l-monoids.Math. Slovaca 57 (2007), 321-332. MR 2357828, 10.2478/s12175-007-0026-3
Reference: [25] Rachůnek, J., Šalounová, D.: A generalization of local fuzzy structures.Soft Comput. 11 (2007), 565-571. Zbl 1121.06013, 10.1007/s00500-006-0101-7
Reference: [26] Rachůnek, J., Šalounová, D.: Modal operators on bounded residuated l-monoids.Math. Bohem. 133 (2008), 299-311. Zbl 1199.06043, MR 2494783
Reference: [27] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca 56 (2006), 223-233. Zbl 1150.06015, MR 2229343
Reference: [28] Wraith, G. C.: Lectures on elementary topoi.Model Theor. Topoi, Collect. Lect. var. Auth., Lect. Notes Math. 445 (1975), 114-206. Zbl 0323.18005, MR 0393179, 10.1007/BFb0061296
.

Files

Files Size Format View
MathBohem_137-2012-3_6.pdf 248.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo