Previous |  Up |  Next

Article

Title: On the equality between some classes of operators on Banach lattices (English)
Author: Aqzzouz, Belmesnaoui
Author: Elbour, Aziz
Author: Moussa, Mohammed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 347-354
Summary lang: English
.
Category: math
.
Summary: We establish some sufficient conditions under which the subspaces of Dunford-Pettis operators, of M-weakly compact operators, of L-weakly compact operators, of weakly compact operators, of semi-compact operators and of compact operators coincide and we give some consequences. (English)
Keyword: M-weakly compact operator
Keyword: L-weakly compact operator
Keyword: Dunford-Pettis operator
Keyword: weakly compact operator
Keyword: semi-compact operator
Keyword: compact operator
Keyword: order continuous norm
Keyword: discrete Banach lattice
Keyword: positive Schur property
MSC: 46A40
MSC: 46B28
MSC: 46B40
MSC: 46B42
MSC: 47B65
idZBL: Zbl 1265.46035
idMR: MR3112492
DOI: 10.21136/MB.2012.142899
.
Date available: 2012-08-19T21:32:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142899
.
Reference: [1] D., Aliprantis C., O., Burkinshaw: Locally Solid Riesz Spaces.Academic Press, Providence, RI (1978). Zbl 0402.46005, MR 0493242
Reference: [2] D., Aliprantis C., O., Burkinshaw: Dunford-Pettis operators on Banach lattices.Trans. Amer. Math. Soc. 274 (1982), 227-238. Zbl 0498.47013, MR 0670929, 10.1090/S0002-9947-1982-0670929-1
Reference: [3] D., Aliprantis C., O., Burkinshaw: Positive Operators.Pure and Applied Mathematics, 119. Academic Press, Inc., Orlando, FL (1985). Zbl 0608.47039, MR 0809372
Reference: [4] D., Aliprantis C., O., Burkinshaw: On the ring ideal generated by a positive operator.J. Funct. Anal. 67 (1986), 60-72. Zbl 0588.47044, MR 0842603, 10.1016/0022-1236(86)90043-1
Reference: [5] B., Aqzzouz, R., Nouira, L., Zraoula: Les opérateurs de Dunford-Pettis positifs qui sont faiblement compacts.Proc. Amer. Math. Soc. 134 (2006), 1161-1165. Zbl 1099.46016, MR 2196052, 10.1090/S0002-9939-05-08083-4
Reference: [6] B., Aqzzouz, R., Nouira, L., Zraoula: About positive Dunford-Pettis operators on Banach lattices.J. Math. Anal. Appl. 324 (2006), 49-59. Zbl 1112.47028, MR 2262455, 10.1016/j.jmaa.2005.10.083
Reference: [7] B., Aqzzouz, R., Nouira, L., Zraoula: Semi-compactness of positive Dunford-Pettis operators.Proc. Amer. Math. Soc. 136 (2008), 1997-2006. Zbl 1152.47012, MR 2383506, 10.1090/S0002-9939-08-09032-1
Reference: [8] B., Aqzzouz, R., Nouira, L., Zraoula: On the duality problem of positive Dunford-Pettis operators on Banach lattices.Rend. Circ. Mat. Palermo 57 (2008), 287-294. Zbl 1166.47036, MR 2452672, 10.1007/s12215-008-0021-8
Reference: [9] L., Chen Z., W., Wickstead A.: L-weakly and M-weakly compact operators.Indag. Math. (N.S.) 10 (1999), 321-336. Zbl 1028.47028, MR 1819891, 10.1016/S0019-3577(99)80025-1
Reference: [10] N., Cheng, L., Chen Z., Y., Feng: L and M-weak compactness of positive semi-compact operators.Rend. Circ. Mat. Palermo 59 101-105 (2010). Zbl 1202.47041, MR 2639440, 10.1007/s12215-010-0006-2
Reference: [11] G., Dodds P., H., Fremlin D.: Compact operators on Banach lattices.Israel J. Math. 34 (1979), 287-320. MR 0570888, 10.1007/BF02760610
Reference: [12] J., Kalton N., P., Saab: Ideal properties of regular operators between Banach lattices.Ill. J. Math. 29 (1985), 382-400. MR 0786728, 10.1215/ijm/1256045630
Reference: [13] Meyer-Nieberg, P.: Banach Lattices. Universitext.Springer, Berlin (1991). MR 1128093
Reference: [14] W., Wickstead A.: Converses for the Dodds-Fremlin and Kalton-Saab Theorems.Math. Proc. Camb. Phil. Soc. 120 (1996), 175-179. Zbl 0872.47018, MR 1373356, 10.1017/S0305004100074752
Reference: [15] W., Wnuk: A note on the positive Schur property.Glasgow Math. J. 31 (1989), 169-172. Zbl 0694.46020, MR 0997812, 10.1017/S0017089500007692
Reference: [16] C., Zaanen A.: Riesz Spaces II.North Holland, Amsterdam (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
MathBohem_137-2012-3_7.pdf 218.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo