Previous |  Up |  Next

Article

Title: Ultimate boundedness of some third order ordinary differential equations (English)
Author: Afuwape, Anthony Uyi
Author: Omeike, M. O.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 355-364
Summary lang: English
.
Category: math
.
Summary: We prove the ultimate boundedness of solutions of some third order nonlinear ordinary differential equations using the Lyapunov method. The results obtained generalize earlier results of Ezeilo, Tejumola, Reissig, Tunç and others. The Lyapunov function used does not involve the use of signum functions as used by others. (English)
Keyword: ultimate boundedness
Keyword: complete Lyapunov function
Keyword: differential equation of third-order
MSC: 34C11
MSC: 34K20
MSC: 37B25
idZBL: Zbl 1265.34134
idMR: MR3112493
DOI: 10.21136/MB.2012.142900
.
Date available: 2012-08-19T21:35:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142900
.
Reference: [1] Ademola, T. A., Ogundiran, M. O., Arawomo, P. O, Adesina, O. A: Boundedness results for a certain third order nonlinear differential equation.Appl. Math. Comput. 216 (2010), 3044-3049. Zbl 1201.34055, MR 2653118, 10.1016/j.amc.2010.04.022
Reference: [2] Afuwape, A. U.: Frequency-domain criteria for dissipativity of some third order differential equations.An. Stiint. Univ. Al. I. Cuza Iasi, n. Ser., Sect. Ia 24 (1978), 271-275. Zbl 0405.34053, MR 0533755
Reference: [3] Afuwape, A. U.: An application of the frequency-domain criteria for dissipativity of a certain third order non-linear differential equation.Analysis 1 (1981), 211-216. Zbl 0488.34043, MR 0660717, 10.1524/anly.1981.1.3.211
Reference: [4] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third order nonlinear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 43 (2004), 7-20. MR 2124598
Reference: [5] Afuwape, A. U., Omeike, M. O.: Convergence of solutions of certain third order systems of nonlinear ordinary differential equations.J. Nigerian Math. Soc. 25 (2006), 1-12. MR 2376821
Reference: [6] Afuwape, A. U., Omeike, M. O.: Convergence of solutions of certain non-homogeneous third order ordinary differential equations.Kragujevac J. Math. 31 (2008), 5-16. Zbl 1199.34246, MR 2478598
Reference: [7] Bereketoglu, H., Gyori, I.: On the boundedness of the solutions of a third-order nonlinear differential equation.Dynam. Systems Appl. 6 (1997), 263-270. MR 1461442
Reference: [8] Chukwu, E. N.: On the boundedness of solutions of third order differential equations.Ann. Mat. Pur. Appl. 104 (1975), 123-149. Zbl 0319.34027, MR 0377180, 10.1007/BF02417013
Reference: [9] Ezeilo, J. O. C.: An elementary proof of a boundedness theorem for a certain third order differential equation.J. Lond. Math. Soc. 38 (1963), 11-16. Zbl 0116.06902, MR 0166450, 10.1112/jlms/s1-38.1.11
Reference: [10] Ezeilo, J. O. C.: Some results for the solutions of a certain system of differential equations.J. Math. Anal. Appl. 6 (1963), 389-393. Zbl 0116.29405, MR 0153926
Reference: [11] Ezeilo, J. O. C.: A generalization of a boundedness theorem for a certain third order differential equation.Proc. Cambridge Philos. Soc. 63 (1967), 735-742. MR 0213657
Reference: [12] Ezeilo, J. O. C.: New properties of the equation $x'''+ax'' + bx' + h(x) = p(t,x,x',x'')$ for certain special values of the incrementary ratio $y^{-1}\{h(x+y)-h(x)\}$.Equations differentielles et functionalles non-lineares, Hermann Publishing, Paris P. Janssons, J. Mawhin, N. Rouche (1973), 447-462. MR 0430413
Reference: [13] Ezeilo, J. O. C.: A generalization of some boundedness results by Reissig and Tejumola.J. Math. Anal. Appl. 41 (1973), 411-419. Zbl 0253.34016, MR 0316821, 10.1016/0022-247X(73)90215-1
Reference: [14] Ezeilo, J. O. C.: A further result on the existence of periodic solutions of the equation $\stackrel{...}x+\Psi(\dot{x})\ddot{x}+\phi(x)\dot{x}+v(x,\dot{x},\ddot{x})=p(t)$ with a bound $\nu$.Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1978), 51-57. MR 0571030
Reference: [15] Haddad, W. A., Chellaboina, V. S.: Nonlinear Dynamical Systems and Control---A Lyapunov-Based Approach.Princeton University Press, Princeton (2008). Zbl 1142.34001, MR 2381711
Reference: [16] Hara, T.: On a uniform ultimate boundedness of the solution of certain third order differential equations.J. Math. Anal. Appl. 80 (1981), 533-544. MR 0614848, 10.1016/0022-247X(81)90122-0
Reference: [17] Qian, C.: Asymptotic behavior of third-order nonlinear differential equations.J. Math. Anal. Appl. 284 (2003), 191-205. MR 1996127, 10.1016/S0022-247X(03)00302-0
Reference: [18] Reisssig, R.: Über die Existenz periodischer Lösungen bei einer nichtlinearen Differentialgleichung dritter Ordnung.Math. Nachr. 32 (1966), 83-88. MR 0216096, 10.1002/mana.19660320109
Reference: [19] Reisssig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order.Noordhoff, Groningen (1974).
Reference: [20] Swick, K. E.: Boundedness and stability for a nonlinear third order differential equation.Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 (1974), 859-865. Zbl 0326.34062, MR 0399597
Reference: [21] Tejumola, H. O.: On the boundedness and periodicity of solutions of certain third-order non-linear differential equations.Ann. Mat. Pura Appl., IV Ser. 83 (1969), 195-212. MR 0262597, 10.1007/BF02411167
Reference: [22] Tunç, Cemil: Boundedness of solutions of a third order nonlinear differential equation.J. Inequal. Pure Appl. Math. 6 (2005), Article 3, 6 pp. (electronic). Zbl 1082.34514, MR 2122950
Reference: [23] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method.Mathematical Society of Japan, Tokyo (1966). MR 0208086
.

Files

Files Size Format View
MathBohem_137-2012-3_8.pdf 233.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo