Previous |  Up |  Next

Article

Title: Copula approach to residuals of regime-switching models (English)
Author: Petričková, Anna
Author: Komorníková, Magda
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 3
Year: 2012
Pages: 550-566
Summary lang: English
.
Category: math
.
Summary: The autocorrelation function describing the linear dependence is not suitable for description of residual dependence of the regime-switching models. In this contribution, inspired by Rakonczai ([20]), we will model the residual dependence of the regime-switching models (SETAR, LSTAR and ESTAR) with the autocopulas (Archimedean, EV and their convex combinations) and construct improved quality models for the original real time series. (English)
Keyword: autocopula
Keyword: time series
Keyword: residuals
Keyword: regime-switching models
MSC: 62A10
MSC: 93E12
idMR: MR2975806
.
Date available: 2012-08-31T16:03:46Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/142956
.
Reference: [1] Akintug, B., Rasmussen, P. F.: A Markov switching model for annual hydrologic time series.Water Resour. Res. 41 (2005). 10.1029/2004WR003605
Reference: [2] Arlt, J., Arltová, M.: Finanční časové rady.Grada Publishing a. s., Praha 2003.
Reference: [3] Brock, W. A., Dechert, W. D., Scheinkman, J. A., Le Baron, B.: A test for independence based on the correlation dimension.Econometr. Rev. 15 (1996), 197–235. Zbl 0893.62034, MR 1410877, 10.1080/07474939608800353
Reference: [4] Campbell, S. D.: Specification Testing and Semiparametric Estimation of Regime Switching Models: An Examination of the US Short Term Interest Rate.Department of Economics, Brown University, 2002.
Reference: [5] Dacco, R., Satchell, S.: Why do regime-switching models forecast so badly?.J. Forecast. 18 (1999), 1–16. 10.1002/(SICI)1099-131X(199901)18:1<1::AID-FOR685>3.0.CO;2-B
Reference: [6] Embrechts, P., Lindskog, F., McNail, A.: Modeling dependence with copulas and applications to risk management.In: Handbook of Heavy Tailed Distributions in Finance (S. Rachev, ed.), Elsevier 8 (2001), pp. 329–384.
Reference: [7] Enders, W., Pascalau, R.: Pretesting the Out-of-sample Forecasting Properties of STAR Models.http://www.faculty.plattsburgh.edu, 2010.
Reference: [8] Franses, P. H., Van Dijk, D.: Non-linear Time Series Models in Empirical Finance.Cambridge University Press, Cambridge 2000.
Reference: [9] Genest, C., Favre, A. C.: Everything you always wanted to know about copula modeling but were afraid to ask.J. Hydrolog. Engrg. (2007), 347–368. 10.1061/(ASCE)1084-0699(2007)12:4(347)
Reference: [10] Ghoudi, K., Khoudraji, A., Rivest, L. P.: Propriétés statistisques des copules de valeurs extremes bidimensionnelles.Canad. J. Statist. 26 (1998), 1, 187–197. MR 1624413, 10.2307/3315683
Reference: [11] Granger, C. W. J., Teräsvirta, T.: Modelling Nonlinear Economic Relationships.Oxford University Press, Oxford 1993. Zbl 0893.90030
Reference: [12] Grønneberg, S., Hjort, N. L.: The copula information criterion.In: Statistical Research Report 7, Dept. of Math. University of Oslo, 2008.
Reference: [13] Hamilton, J. D.: A new approach to the economic analysis of nonstationary time series subject to change in regime.Econometrica 57 (1989), 357–384. MR 0996941, 10.2307/1912559
Reference: [14] Joe, H.: Models and Dependence Concepts.Chapman and Hall, London 1997. Zbl 0990.62517, MR 1462613
Reference: [15] Komorník, J., Komorníková, M.: Copula approach to residuals of Markov-Switching models for economic time series.In: Proc. AGOP 2011, pp. 39–43.
Reference: [16] Montgomery, A., Zarnowitz, V., Tsay, R., Tiao, G.: Forecasting the U.S. unemployment rate.J. Amer. Statist. Assoc. 93 (1998), 478–493. Zbl 0918.62091, 10.1080/01621459.1998.10473696
Reference: [17] Nelsen, R. B.: An introduction to copulas.In: Lecture Notes in Statistics 139, Springer-Verlag, New York 1999. Zbl 1152.62030, MR 1653203
Reference: [18] Prokhorov, A.: A goodness-of-fit test for copulas.In: MPRA Paper 9998, 2008, online at http://mpra.ub.uni-muenchen.de/9998.
Reference: [19] Rakonczai, P.: On modeling and prediction of multivariate extremes with applications to enviromental data.In: Licentiate Theses in Mathematical Sciences (2009), pp. 83–109.
Reference: [20] Rakonczai, P., Márkus, L., Zempléni, A.: Autocopulas: Investigating the interdependence structure of stationary time series.Methodology Comput. Appl. Probab. 14 (2012), 1, 149–167. Zbl 1241.62126, MR 2875096, 10.1007/s11009-011-9230-2
Reference: [21] Teräsvirta, T.: Specification, estimation, and evaluation of smooth transition autoregressive models.J. Amer. Statist. Assoc. 89 (1994), 208–218.
Reference: [22] Teräsvirta, T.: Forecasting economic variables with nonlinear models.In: Handbook of Economic Forecasting (G. Elliot, C. Granger, and A. Timmermann, eds.), Elsevier 8, Amsterdam 2006.
Reference: [23] White, H.: Maximum likelihood estimation of misspecified models.Econometrica 50 (1982), 1–26. Zbl 0518.62092, MR 0640163, 10.2307/1912526
.

Files

Files Size Format View
Kybernetika_48-2012-3_15.pdf 640.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo