[1] Corvaja, P., Hančl, J.:
A transcendence criterion for infinite products. Atti Acad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 18 (2007), 295-303.
DOI 10.4171/RLM/496 |
MR 2318822 |
Zbl 1207.11075
[2] Corvaja, P., Zannier, U.:
On the rational approximations to the powers of an algebraic number: solution of two problems of Mahler and Mendès France. Acta Math. 193 (2004), 175-191.
DOI 10.1007/BF02392563 |
MR 2134865 |
Zbl 1175.11036
[4] Erdős, P.:
Some problems and results on the irrationality of the sum of infinite series. J. Math. Sci. 10 (1975), 1-7.
MR 0539489
[7] Hančl, J., Rucki, P., Šustek, J.:
A generalization of Sándor's theorem using iterated logarithms. Kumamoto J. Math. 19 (2006), 25-36.
MR 2211630 |
Zbl 1220.11087
[10] Lang, S.:
Algebra (3rd ed.). Graduate Texts in Mathematics. Springer, New York (2002).
MR 1878556
[11] Nyblom, M. A.:
On the construction of a family of transcendental valued infinite products. Fibonacci Q. 42 (2004), 353-358.
MR 2110089 |
Zbl 1062.11048
[14] Zhu, Y. Ch.:
Transcendence of certain infinite products. Acta Math. Sin. 43 (2000), 605-610 Chinese. English summary \MR 1825076.
MR 1825076 |
Zbl 1005.11034