Previous |  Up |  Next

Article

Title: Contractible edges in some $k$-connected graphs (English)
Author: Yang, Yingqiu
Author: Sun, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 637-644
Summary lang: English
.
Category: math
.
Summary: An edge $e$ of a $k$-connected graph $G$ is said to be $k$-contractible (or simply contractible) if the graph obtained from $G$ by contracting $e$ (i.e., deleting $e$ and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still $k$-connected. In 2002, Kawarabayashi proved that for any odd integer $k\geq 5$, if $G$ is a $k$-connected graph and $G$ contains no subgraph $D=K_{1}+(K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge. In this paper, by generalizing this result, we prove that for any integer $t\geq 3$ and any odd integer $k \geq 2t+1$, if a $k$-connected graph $G$ contains neither $K_{1}+(K_{2}\cup K_{1, t})$, nor $K_{1}+(2K_{2}\cup K_{1, 2})$, then $G$ has a $k$-contractible edge. (English)
Keyword: component
Keyword: contractible edge
Keyword: $k$-connected graph
Keyword: minimally $k$-connected graph
MSC: 05C40
MSC: 05C76
idZBL: Zbl 1265.05339
idMR: MR2984624
DOI: 10.1007/s10587-012-0055-0
.
Date available: 2012-11-10T21:01:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143015
.
Reference: [1] Ando, K., Kaneko, A., Kawarabayashi, K.: Contractible edges in minimally $k$-connected graphs.Discrete Math. 308 (2008), 597-602. Zbl 1130.05032, MR 2376482, 10.1016/j.disc.2007.03.025
Reference: [2] Ando, K., Kaneko, A., Kawarabayashi, K., Yoshiomoto, K.: Contractible edges and bowties in a $k$-connected graph.Ars Combin. 64 (2002), 239-247. Zbl 1071.05543, MR 1914212
Reference: [3] Egawa, Y., Enomoto, H., Saito, A.: Contractible edges in triangle-free graphs.Combinatorica 6 (1986), 269-274. Zbl 0607.05046, MR 0875294, 10.1007/BF02579387
Reference: [4] Halin, R.: A theorem on $n$-connected graphs.J. Combin. Theory 7 (1969), 150-154. Zbl 0172.25803, MR 0248042, 10.1016/S0021-9800(69)80049-9
Reference: [5] Kawarabayashi, K.: Note on $k$-contractible edges in $k$-connected graphs.Australasian J. Combin. 24 (2001), 165-168. Zbl 0982.05061, MR 1852817
Reference: [6] Kawarabayashi, K.: Contractible edges and triangles in $k$-connected graphs.J. Combin. Theory, Ser. B 85 (2002), 207-221. Zbl 1031.05076, MR 1912964, 10.1006/jctb.2001.2096
Reference: [7] Mader, W.: Ecken vom Grad $n$ in minimalen $n$-fach zusammenhängenden Graphen.Archiv der Mathematik 23 (1972), 219-224 German. Zbl 0212.29402, MR 0306043, 10.1007/BF01304873
Reference: [8] Mader, W.: Disjunkte Fragmente in kritisch $n$-fach zusammenhängende Graphen.European J. Combin. 6 (1985), 353-359 German. MR 0829354, 10.1016/S0195-6698(85)80048-2
Reference: [9] Mader, W.: Generalizations of critical connectivity of graphs.Discrete Math. 72 (1988), 267-283. MR 0975546, 10.1016/0012-365X(88)90216-6
Reference: [10] Thomassen, C.: Non-separating cycles in $k$-connected graphs.J. Graph Theory 5 (1981), 351-354. MR 0635696, 10.1002/jgt.3190050403
.

Files

Files Size Format View
CzechMathJ_62-2012-3_5.pdf 232.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo