Previous |  Up |  Next

Article

Title: On co-ordinated quasi-convex functions (English)
Author: Özdemir, M. Emin
Author: Akdemir, Ahmet Ocak
Author: Yıldız, Çetin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 889-900
Summary lang: English
.
Category: math
.
Summary: A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if $$ f( tx+( 1-t) y) \leq tf( x) +(1-t) f( y) $$ holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. \endgraf We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir's results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions. (English)
Keyword: co-ordinate
Keyword: quasi-convex
Keyword: Wright-quasi-convex
Keyword: Jensen-quasi-convex
MSC: 26B25
MSC: 26D15
idZBL: Zbl 1274.26067
idMR: MR3010246
DOI: 10.1007/s10587-012-0072-z
.
Date available: 2012-11-10T21:27:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143034
.
Reference: [1] Alomari, M., Darus, M., Dragomir, S. S.: New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex.Tamkang J. Math. 41 353-359 (2010). Zbl 1214.26003, MR 2789971, 10.5556/j.tkjm.41.2010.498
Reference: [2] Alomari, M. W., Darus, M., Kirmaci, U. S.: Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means.Comput. Math. Appl. 59 225-232 (2010). Zbl 1189.26037, MR 2575509, 10.1016/j.camwa.2009.08.002
Reference: [3] Alomari, M., Darus, M.: On some inequalities Simpson-type via quasi-convex functions with applications.Transylv. J. Math. Mech. 2 (2010), 15-24. MR 2817188
Reference: [4] Alomari, M., Darus, M.: Hadamard-type inequalities for $s$-convex functions.Int. Math. Forum 3 (2008), 1965-1975. Zbl 1163.26325, MR 2470655
Reference: [5] Alomari, M., Darus, M.: The Hadamard's inequality for $s$-convex function of $2$-variables on the co-ordinates.Int. J. Math. Anal., Ruse 2 (2008), 629-638. Zbl 1178.26017, MR 2482668
Reference: [6] Alomari, M., Darus, M.: Coordinated $s$-convex function in the first sense with some Hadamard-type inequalities.Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567. Zbl 1178.26015, MR 2514034
Reference: [7] Dragomir, S. S.: On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane.Taiwanese J. Math. 5 (2001), 775-788. Zbl 1002.26017, MR 1870047, 10.11650/twjm/1500574995
Reference: [8] Dragomir, S. S., Pearce, C. E. M.: Quasi-convex functions and Hadamard's inequality.Bull. Aust. Math. Soc. 57 (1998), 377-385. Zbl 0908.26015, MR 1623227, 10.1017/S0004972700031786
Reference: [9] Hwang, D. Y., Tseng, K. L., Yang, G. S.: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane.Taiwanese J. Math. 11 (2007), 63-73. Zbl 1132.26360, MR 2304005, 10.11650/twjm/1500404635
Reference: [10] Ion, D. A.: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions.An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88. Zbl 1174.26321, MR 2517875
Reference: [11] Bakula, M. Klaričić, Pečarić, J.: On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane.Taiwanese J. Math. 10 (2006), 1271-1292. MR 2253378, 10.11650/twjm/1500557302
Reference: [12] Latif, M. A., Alomari, M.: On Hadamard-type inequalities for $h$-convex functions on the co-ordinates.Int. J. Math. Anal., Ruse 3 (2009), 1645-1656. MR 2657722
Reference: [13] Latif, M. A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates.Int. Math. Forum 4 (2009), 2327-2338. Zbl 1197.26029, MR 2579666
Reference: [14] Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M.: Inequalities for convex and $s$-convex functions on $\Delta =[a,b]\times[c,d]$.J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20. MR 2935480, 10.1186/1029-242X-2012-20
Reference: [15] Özdemir, M. E., Latif, M. A., Akdemir, A. O.: On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates.J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21. MR 2892628, 10.1186/1029-242X-2012-21
Reference: [16] Özdemir, M. E., Set, E., kaya, M. Z. Sarı: Some new Hadamard type inequalities for co-ordinated $m$-convex and $(\alpha ,m)$-convex functions.Hacet. J. Math. Stat. 40 219-229 (2011). MR 2839189
Reference: [17] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications.Academic Press, Boston (1992). Zbl 0749.26004, MR 1162312
Reference: [18] Tseng, K.-L., Yang, G.-S., Dragomir, S. S.: On quasi convex functions and Hadamard's inequality.Demonstr. Math. 41 323-336 (2008). Zbl 1151.26333, MR 2419910
Reference: [19] Wright, E. M.: An inequality for convex functions.Amer. Math. Monthly 61 (1954), 620-622. Zbl 0057.04801, MR 0064828, 10.2307/2307675
.

Files

Files Size Format View
CzechMathJ_62-2012-4_3.pdf 243.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo