Previous |  Up |  Next

Article

Title: Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$ (English)
Author: Fatehi, Mahsa
Author: Robati, Bahram Khani
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 901-917
Summary lang: English
.
Category: math
.
Summary: In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\cal S}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$. (English)
Keyword: Hardy spaces
Keyword: essentially normal
Keyword: composition operator
Keyword: linear-fractional transformation
MSC: 30H10
MSC: 46E20
MSC: 47B33
MSC: 47B35
idZBL: Zbl 1262.47052
idMR: MR3010247
DOI: 10.1007/s10587-012-0073-y
.
Date available: 2012-11-10T21:29:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143035
.
Reference: [1] Aleksandrov, A. B.: Multiplicity of boundary values of inner functions.Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. Zbl 0648.30002, MR 0931885
Reference: [2] Bourdon, P. S.: Components of linear-fractional composition operators.J. Math. Anal. Appl. 279 (2003), 228-245. Zbl 1043.47021, MR 1970503, 10.1016/S0022-247X(03)00004-0
Reference: [3] Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H.: Which linear-fractional composition operators are essentially normal?.J. Math. Anal. Appl. 280 (2003), 30-53. Zbl 1024.47008, MR 1972190, 10.1016/S0022-247X(03)00005-2
Reference: [4] Chacón, G. A., Chacón, G. R.: Some properties of composition operators on the Dirichlet space.Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. Zbl 1151.47033, MR 2195485
Reference: [5] Clark, D. N.: One-dimensional perturbations of restricted shifts.J. Anal. Math. 25 (1972), 169-191. Zbl 0252.47010, MR 0301534, 10.1007/BF02790036
Reference: [6] Cowen, C. C.: Linear fractional composition operators on $H^{2}$.Integral Equations Oper. Theory 11 (1988), 151-160. MR 0928479, 10.1007/BF01272115
Reference: [7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.CRC Press Boca Raton (1995). Zbl 0873.47017, MR 1397026
Reference: [8] Duren, P. L.: Theory of $H^{p}$ Spaces.Academic Press New York (1970). MR 0268655
Reference: [9] Heller, K., MacCluer, B. D., Weir, R. J.: Compact differences of composition operators in several variables.Integral Equations Oper. Theory 69 (2011), 247-268. Zbl 1241.47022, MR 2765588, 10.1007/s00020-010-1840-5
Reference: [10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.: Toeplitz-composition $C^{\ast}$-algebras.J. Oper. Theory 58 (2007), 135-156. Zbl 1134.47303, MR 2336048
Reference: [11] Kriete, T. L., Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators.Trans. Am. Math. Soc. 359 (2007), 2915-2944. Zbl 1115.47023, MR 2286063, 10.1090/S0002-9947-07-04166-9
Reference: [12] MacCluer, B. D., Weir, R. J.: Essentially normal composition operators on Bergman spaces.Acta Sci. Math. 70 (2004), 799-817. Zbl 1087.47031, MR 2107542
Reference: [13] MacCluer, B. D., Weir, R. J.: Linear-fractional composition operators in several variables.Integral Equations Oper. Theory 53 (2005), 373-402. Zbl 1121.47017, MR 2186097, 10.1007/s00020-005-1372-6
Reference: [14] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012
Reference: [15] Poltoratski, A. G.: The boundary behavior of pseudocontinuable functions.St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. MR 1223178
Reference: [16] Ryff, J. V.: Subordinate $H^{p}$ functions.Duke Math. J. 33 (1966), 347-354. MR 0192062, 10.1215/S0012-7094-66-03340-0
Reference: [17] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk.University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). MR 1289670
Reference: [18] Schwartz, H. J.: Composition operators on $H^{p}$.Ph.D. Thesis University of Toledo (1969). MR 2618707
Reference: [19] Shapiro, J. H.: Composition Operators and Classical Function Theory.Springer New York (1993). Zbl 0791.30033, MR 1237406
Reference: [20] Shapiro, J. H., Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$.Indiana Univ. Math. J. 23 (1973), 471-496. MR 0326472
Reference: [21] Zorboska, N.: Closed range essentially normal composition operators are normal.Acta Sci. Math. 65 (1999), 287-292. Zbl 0938.47022, MR 1702203
.

Files

Files Size Format View
CzechMathJ_62-2012-4_4.pdf 325.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo