Title:
|
On a kind of generalized Lehmer problem (English) |
Author:
|
Ma, Rong |
Author:
|
Zhang, Yulong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
1135-1146 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\{0,1\}$, and let $a_1, a_2,\dots , a_m$ $(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\pmod p$. Let \begin {equation*} N(c,m,p)=\frac {1}{2^{m-1}}\mathop {\mathop {\sum }_{a_1=1}^{p-1} \mathop {\sum }_{a_2=1}^{p-1}\dots \mathop {\sum }_{a_m=1}^{p-1}} _{a_1a_2\dots a_m\equiv c\pmod p} (1-(-1)^{a_1+E_1})(1-(-1)^{a_2+E_2})\dots (1-(-1)^{a_m+E_m}). \end {equation*} \endgraf We are interested in the mean value of the sums \begin {equation*} \sum _{c=1}^{p-1}E^2(c,m,p), \end {equation*} where $ E(c,m,p)=N(c,m,p)-({(p-1)^{m-1}})/({2^{m-1}})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem. (English) |
Keyword:
|
Lehmer problem |
Keyword:
|
character sum |
Keyword:
|
Dirichlet $L$-function |
Keyword:
|
asymptotic formula |
MSC:
|
11A25 |
MSC:
|
11M06 |
MSC:
|
11N37 |
idZBL:
|
Zbl 1259.11090 |
idMR:
|
MR3010261 |
DOI:
|
10.1007/s10587-012-0068-8 |
. |
Date available:
|
2012-11-10T21:51:48Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143049 |
. |
Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Springer New York (1976). Zbl 0335.10001, MR 0434929 |
Reference:
|
[2] Guy, R. K.: Unsolved Problems in Number Theory.Springer New York-Heidelberg-Berlin (1981). Zbl 0474.10001, MR 0656313 |
Reference:
|
[3] Ma, R., Zhang, J., Zhang, Y.: On the $2m$th power mean of Dirichlet $L$-functions with the weight of trigonometric sums.Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 411-421. MR 2647187, 10.1007/s12044-009-0046-8 |
Reference:
|
[4] Ma, R., Yi, Y., Zhang, Y.: On the mean value of the generalized Dirichlet $L$-functions.Czech. Math. J. 60 (2010), 597-620. Zbl 1224.11077, MR 2672404, 10.1007/s10587-010-0056-9 |
Reference:
|
[5] Xu, Z., Zhang, W.: On the $2k$th power mean of the character sums over short intervals.Acta Arith. 121 (2006), 149-160. Zbl 1153.11046, MR 2216139, 10.4064/aa121-2-4 |
Reference:
|
[6] Xu, Z., Zhang, W.: On a problem of D. H. Lehmer over short intervals.J. Math. Anal. Appl 320 (2006), 756-770. Zbl 1098.11050, MR 2225991, 10.1016/j.jmaa.2005.07.054 |
Reference:
|
[7] Zhang, W.: On a problem of D. H. Lehmer and its generalization.Compos. Math. 86 (1993), 307-316. Zbl 0783.11003, MR 1219630 |
Reference:
|
[8] Zhang, W.: A problem of D. H. Lehmer and its generalization (II).Compos. Math. 91 (1994), 47-56. Zbl 0798.11001, MR 1273925 |
. |