Previous |  Up |  Next

Article

Title: Limits of Bayesian decision related quantities of binomial asset price models (English)
Author: Stummer, Wolfgang
Author: Lao, Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 4
Year: 2012
Pages: 750-767
Summary lang: English
.
Category: math
.
Summary: We study Bayesian decision making based on observations $\left(X_{n,t} : t\in\{0,\frac{T}{n},2\frac{T}{n},\ldots,n\frac{T}{n}\}\right)$ ($T>0, n\in \mathbb{N}$) of the discrete-time price dynamics of a financial asset, when the hypothesis a special $n$-period binomial model and the alternative is a different $n$-period binomial model. As the observation gaps tend to zero (i. e. $n \rightarrow \infty$), we obtain the limits of the corresponding Bayes risk as well as of the related Hellinger integrals and power divergences. Furthermore, we also give an example for the “non-commutativity” between Bayesian statistical and optimal investment decisions. (English)
Keyword: Bayesian decisions
Keyword: power divergences
Keyword: Cox--Ross--Rubinstein binomial asset price models
MSC: 62C10
MSC: 91B25
MSC: 94A17
idMR: MR3013397
.
Date available: 2012-11-10T22:06:52Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143058
.
Reference: [1] A. K. Bera, Y. Bilias: The MM, ME, ML, EL, EF and GMM approaches to estimation: a synthesis..J. Econometrics 107 (2002), 51-86. Zbl 1088.62505, MR 1889952, 10.1016/S0304-4076(01)00113-0
Reference: [2] A. Berlinet, I. Vajda: Selection rules based on divergences..Statistics 45 (2011), 479-495. Zbl 1229.62035, MR 2832180, 10.1080/02331880903573385
Reference: [3] M. Broniatowski, I. Vajda: Several applications of divergence criteria in continuous families..To appear in Kybernetika (2012). See also Research Report No. 2257, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2009; moreover, see arXiv:0911.0937v1 [math.ST].
Reference: [4] J. C. Cox, S. A. Ross, M. Rubinstein: Option pricing: a simplified approach..J. Finan. Econ. 7 (1979), 229-263. Zbl 1131.91333, 10.1016/0304-405X(79)90015-1
Reference: [5] N. Cressie, T. R. C. Read: Multinomial goodness-of-fit tests..J. Roy. Stat. Soc. Ser. B Stat. Methodol. 46 (1984), 440-464. Zbl 0571.62017, MR 0790631
Reference: [6] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for exponential families..Probab. Theory Related Fields 141 (2008), 213-246. Zbl 1133.62039, MR 2372970, 10.1007/s00440-007-0084-z
Reference: [7] I. Csiszár, P. C. Shields: Information theory and statistics: a tutorial..Found. Trends Commun. Inform. Theory 1 (2004), 4, 417-528. Zbl 1157.62300, 10.1561/0100000004
Reference: [8] I. V. Girsanov: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures..Theory Probab. Appl. 5 (1960), 285-301. Zbl 0100.34004, MR 0133152
Reference: [9] A. Golan: Information and entropy econometrics - editor's view..J. Econometrics 107 (2002), 1-15. Zbl 1088.62519, MR 1889949, 10.1016/S0304-4076(01)00110-5
Reference: [10] A. Gretton, L. Györfi: Consistent nonparametric tests of independence..J. Mach. Learn. Res. 11 (2010), 1391-1423. Zbl 1242.62033, MR 2645456
Reference: [11] P. Harremoes, I. Vajda: On the Bahadur-effcient testing of uniformity by means of the entropy..IEEE Trans. Inform. Theory 54 (2008), 321-331. MR 2446756, 10.1109/TIT.2007.911155
Reference: [12] P. Harremoes, I. Vajda: On Bahadur efficiency of power divergence statistics..Preprint arXiv:1002.1493v1 [math.ST] (2010).
Reference: [13] T. Hobza, L. Pardo, D. Morales: Rényi statistics for testing equality of autocorrelation coefficients..Statist. Methodol. 6 (2009), 424-436. MR 2751084, 10.1016/j.stamet.2009.03.001
Reference: [14] F. Liese, K.-J. Miescke: Statistical Decision Theory..Springer-Verlag, New York 2008. Zbl 1154.62008, MR 2421720
Reference: [15] F. Liese, D. Morales, I. Vajda: Asymptotically sufficient partitions and quantizations..IEEE Trans. Inform. Theory 52 (2006), 5599-5606. MR 2300722, 10.1109/TIT.2006.885495
Reference: [16] F. Liese, I. Vajda: Convex Statistical Distances..Teubner, Leipzig 1987. Zbl 0656.62004, MR 0926905
Reference: [17] F. Liese, I. Vajda: On divergences and informations in statistics and information theory..IEEE Trans. Inform. Theory 52 (2006), 4394-4412. MR 2300826, 10.1109/TIT.2006.881731
Reference: [18] E. Maasoumi: A compendium to information theory in economics and econometrics..Econometrics Rev. 12 (1993), 2, 137-181. Zbl 0769.62003, MR 1222574, 10.1080/07474939308800260
Reference: [19] D. Morales, I. Vajda: Generalized information criteria for optimal Bayes decisions..Research Report No. 2274, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague 2010.
Reference: [20] D. B. Nelson, K. Ramaswamy: Simple binomial processes as diffusion approximations in financial models..Rev. Financ. Stud. 3 (1990), 393-430. 10.1093/rfs/3.3.393
Reference: [21] L. Pardo: Statistical Inference Based on Divergence Measures..Chapman \& Hall, Boca Raton 2005. Zbl 1118.62008, MR 2183173
Reference: [22] M. C. Pardo: Testing equality restrictions in generalized linear models for multinomial data..Metrika 73 (2011), 231-253. Zbl 1206.62131, MR 2769272, 10.1007/s00184-009-0275-y
Reference: [23] T. R. C. Read, N. A. C. Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data..Springer-Verlag, New York 1988. Zbl 0663.62065, MR 0955054
Reference: [24] H. Strasser: Mathematical Theory of Statistics..De Gruyter, Berlin 1985. Zbl 0594.62017, MR 0812467
Reference: [25] W. Stummer: Exponentials, Diffusions, Finance, Entropy and Information..Shaker, Aachen 2004. Zbl 1140.91013
Reference: [26] W. Stummer, I. Vajda: Optimal statistical decisions about some alternative financial models..J. Econometrics 137 (2007), 441-471. MR 2354952, 10.1016/j.jeconom.2005.10.001
Reference: [27] W. Stummer, I. Vajda: On divergences of finite measures and their applicability in statistics and information theory..Statistics 44 (2010), 169-187. MR 2674416, 10.1080/02331880902986919
Reference: [28] I. Vajda, E.C. van der Meulen: Goodness-of-Fit criteria based on observations quantized by hypothetical and empirical percentiles..In: Handbook of Fitting Statistical Distributions with R (Z.A. Katrian, E.J. Dudewicz eds.), Chapman \& Hall / CRC, 2010, pp. 917-994.
Reference: [29] I. Vajda, J. Zvárová: On generalized entropies, Bayesian decisions and statistical diversity..Kybernetika 43 (2007), 675-696. Zbl 1143.94006, MR 2376331
.

Files

Files Size Format View
Kybernetika_48-2012-4_7.pdf 379.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo