Previous |  Up |  Next

Article

Title: Robust median estimator for generalized linear models with binary responses (English)
Author: Hobza, Tomáš
Author: Pardo, Leandro
Author: Vajda, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 4
Year: 2012
Pages: 768-794
Summary lang: English
.
Category: math
.
Summary: The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments concerning a method called enhancement and robustness of median estimator are given and results of simulation experiment comparing behavior of median estimator with other robust estimators for GLM's known from the literature are reported. (English)
Keyword: generalized linear models
Keyword: binary responses
Keyword: statistical smoothing
Keyword: statistical enhancing
Keyword: maximum likelihood estimator
Keyword: median estimator
Keyword: consistency
Keyword: asymptotic normality
Keyword: efficiency
Keyword: robustness
MSC: 62F10
MSC: 62F12
MSC: 62F35
idMR: MR3013398
.
Date available: 2012-11-10T22:08:28Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143059
.
Reference: [1] G. Adimari, L. Ventura: Robust inference for generalized linear models with application to logistic regression..Statist. Probab. Lett. 55 (2001), 4, 413-419. Zbl 0994.62062, MR 1877646, 10.1016/S0167-7152(01)00157-2
Reference: [2] A. M. Bianco, V. J. Yohai: Robust estimation in the logistic regression model..In: Robust Statistics, Data Analysis, and Computer Intensive Methods (Schloss Thurnau, 1994), pp. 17-34. Lecture Notes in Statist. 109 Springer, New York 1996. Zbl 0839.62030, MR 1491394
Reference: [3] C. Croux, G. Haesbroeck: Implementing the Bianco and Yohai estimator for logistic regression..Computat. Statist. Data Anal. 44 (2003), 273-295. MR 2020151, 10.1016/S0167-9473(03)00042-2
Reference: [4] J. E. Dennis, Jr., R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations..Prentice-Hall, Englewood Cliffs, New Jersey 1983. Zbl 0847.65038, MR 0702023
Reference: [5] D. Gervini: Robust adaptive estimators for binary regression models..J. Statist. Plann. Inference 131 (2005), 297-311. Zbl 1061.62036, MR 2139374, 10.1016/j.jspi.2004.02.006
Reference: [6] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions..Wiley, New York 1986. Zbl 0733.62038, MR 0829458
Reference: [7] T. Hobza, L. Pardo, I. Vajda: Median Estimators in Generalized Logistic Regression..Research Report DAR-UTIA 2005/40. Institute of Information Theory, Prague 2005 (available at http://dar.site.cas.cz/?publication=1007).
Reference: [8] T. Hobza, L. Pardo, I. Vajda: Robust Median Estimators in Logistic Regression..Research Report DAR-UTIA 2006/31. Institute of Information Theory, Prague 2006 (available at http://dar.site.cas.cz/?publication=1089).
Reference: [9] T. Hobza, L. Pardo, I. Vajda: Robust median estimator in logistic regression..J. Statist. Plann. Inference 138 (2008), 3822-3840. Zbl 1146.62015, MR 2455970, 10.1016/j.jspi.2008.02.010
Reference: [10] J. Jurečková, P. K. Sen: Robust Statistical Procedures..Wiley, New York 1996. Zbl 0862.62032, MR 1387346
Reference: [11] N. Kordzakhia, G. D. Mishra, L. Reiersølmoen: Robust estimation in the logistic regression model..J. Statist. Plann. Inference 98 (2001), 211-223. MR 1860395, 10.1016/S0378-3758(00)00312-8
Reference: [12] F. Liese, I. Vajda: $M$-estimators of structural parameters in pseudolinear models..Appl. Math. 44 (1999), 245-270. Zbl 1060.62029, MR 1698768, 10.1023/A:1023027929079
Reference: [13] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators I..Math. Methods Statist. 12 (2003) 454-477. MR 2054158
Reference: [14] F. Liese, I. Vajda: A general asymptotic theory of $M$-estimators II..Math. Methods Statist. 13 (2004) 82-95. Zbl 1185.62053, MR 2078314
Reference: [15] P. McCullagh, J. A. Nelder: Generalized Linear Models..Chapman and Hall, London 1989. Zbl 0744.62098, MR 0727836
Reference: [16] M. L. Menéndez, L. Pardo, M. C. Pardo: Preliminary test estimators and phi-divergence measures in generalized linear models with binary data..J. Multivariate Anal. 99 (2009), 10, 2265-2284. Zbl 1154.62051, MR 2463388, 10.1016/j.jmva.2008.02.011
Reference: [17] J. Moré, G. Burton, H. Kenneth: User Guide for MINPACK-1..Argonne National Laboratory Report ANL-80-74, Argonne 1980.
Reference: [18] S. Morgenthaler: Least-absolute-deviations fits for generalized linear models..Biometrika 79 (1992), 747-754. Zbl 0850.62562, 10.1093/biomet/79.4.747
Reference: [19] J. Nagler: Scobit: An alternative estimator to logit and Probit..Amer. J. Political Sci. 38 (1994), 1, 230-255. 10.2307/2111343
Reference: [20] D. Pregibon: Resistant lits for some commonly used logistic models with medical applications..Biometrics 38 (1982), 485-498. 10.2307/2530463
Reference: [21] R. L. Prentice: A generalization of the probit and logit methods for dose-response curves..Biometrika 32 (1976), 761-768.
Reference: [22] P. J. Rousseeuw, A. Christmann: Robustness against separation and outliers in logistic regression..Comput. Statist. Data Anal. 43 (2003), 315-332. MR 1996815, 10.1016/S0167-9473(02)00304-3
.

Files

Files Size Format View
Kybernetika_48-2012-4_8.pdf 406.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo