Title:
|
Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations (English) |
Author:
|
Brestovanská, Eva |
Author:
|
Medveď, Milan |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
27-39 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb {R}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved. (English) |
Keyword:
|
fixed point |
Keyword:
|
Banach algebra |
Keyword:
|
integral equation |
Keyword:
|
integro-differential system |
Keyword:
|
epidemic model |
Keyword:
|
blowing-up solution |
MSC:
|
45G15 |
MSC:
|
47B48 |
MSC:
|
47H10 |
MSC:
|
92D30 |
idZBL:
|
Zbl 06204928 |
idMR:
|
MR3058871 |
. |
Date available:
|
2012-11-26T10:15:25Z |
Last updated:
|
2014-03-12 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143065 |
. |
Reference:
|
[1] Abdeldaim, A.: On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic model. J. Integral Equations Appl. (2011), (to appear). MR 2945799 |
Reference:
|
[2] Banas, J., Sadarangani, K.: Solutions of some functional-integral equations in Banach Algebra. Math. Comput. Modelling 38 (2003), 245–250. Zbl 1053.45007, MR 2004993, 10.1016/S0895-7177(03)90084-7 |
Reference:
|
[3] Banas, J., Lacko, M.: Fixed points of the product of operators in Banach algebra. Panamer. Math. J. 12 (2002), 101–109. MR 1895774 |
Reference:
|
[4] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Mathematica Hungarica 7, 1 (1956), 81–94. Zbl 0070.08201, MR 0079154, 10.1007/BF02022967 |
Reference:
|
[5] Brestovanská, E.: Qualitative behaviour of an integral equation related to some epidemic model. Demonstratio Math. 36, 3 (2003), 604–609. Zbl 1044.45001, MR 2004545 |
Reference:
|
[6] Djebali, S., Hammache, K.: Furi-Pera fixed point theorems in Banach algebra with applications. Acta Univ. Palacki. Olomouc, Fac. Rer. Nat., Math. 47 (2008), 55–75. MR 2482717 |
Reference:
|
[7] Gripenberg, G.: On some epidmic models. Quart. Appl. Math. 39 (1981), 317–327. MR 0636238 |
Reference:
|
[8] Krasnosel’skii, M. A.: Two remarks on the method of succesive approximations. Uspechi Mat. Nauk 10 (1955), 123–127. MR 0068119 |
Reference:
|
[9] Olaru, I. M.: An integral equation via weakly Picard operators. Fixed Point Theory 11, 1 (2010), 97–106. Zbl 1196.45009, MR 2656009 |
Reference:
|
[10] Olaru, I. M.: Generalization of an integral equation related to some epidemic models. Carpatian J. Math. 26 (2010), 0–4. Zbl 1224.34205, MR 2676722 |
Reference:
|
[11] Zeidler, E.: Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, Vol. 108, Springer-Verlag, New York, 1995. Zbl 0834.46002, MR 1347691, 10.1007/978-1-4612-0815-0 |
. |