Previous |  Up |  Next

Article

Title: Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations (English)
Author: Brestovanská, Eva
Author: Medveď, Milan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 2
Year: 2012
Pages: 27-39
Summary lang: English
.
Category: math
.
Summary: In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb {R}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved. (English)
Keyword: fixed point
Keyword: Banach algebra
Keyword: integral equation
Keyword: integro-differential system
Keyword: epidemic model
Keyword: blowing-up solution
MSC: 45G15
MSC: 47B48
MSC: 47H10
MSC: 92D30
idZBL: Zbl 06204928
idMR: MR3058871
.
Date available: 2012-11-26T10:15:25Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/143065
.
Reference: [1] Abdeldaim, A.: On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic model. J. Integral Equations Appl. (2011), (to appear). MR 2945799
Reference: [2] Banas, J., Sadarangani, K.: Solutions of some functional-integral equations in Banach Algebra. Math. Comput. Modelling 38 (2003), 245–250. Zbl 1053.45007, MR 2004993, 10.1016/S0895-7177(03)90084-7
Reference: [3] Banas, J., Lacko, M.: Fixed points of the product of operators in Banach algebra. Panamer. Math. J. 12 (2002), 101–109. MR 1895774
Reference: [4] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Mathematica Hungarica 7, 1 (1956), 81–94. Zbl 0070.08201, MR 0079154, 10.1007/BF02022967
Reference: [5] Brestovanská, E.: Qualitative behaviour of an integral equation related to some epidemic model. Demonstratio Math. 36, 3 (2003), 604–609. Zbl 1044.45001, MR 2004545
Reference: [6] Djebali, S., Hammache, K.: Furi-Pera fixed point theorems in Banach algebra with applications. Acta Univ. Palacki. Olomouc, Fac. Rer. Nat., Math. 47 (2008), 55–75. MR 2482717
Reference: [7] Gripenberg, G.: On some epidmic models. Quart. Appl. Math. 39 (1981), 317–327. MR 0636238
Reference: [8] Krasnosel’skii, M. A.: Two remarks on the method of succesive approximations. Uspechi Mat. Nauk 10 (1955), 123–127. MR 0068119
Reference: [9] Olaru, I. M.: An integral equation via weakly Picard operators. Fixed Point Theory 11, 1 (2010), 97–106. Zbl 1196.45009, MR 2656009
Reference: [10] Olaru, I. M.: Generalization of an integral equation related to some epidemic models. Carpatian J. Math. 26 (2010), 0–4. Zbl 1224.34205, MR 2676722
Reference: [11] Zeidler, E.: Applied Functional Analysis: Applications to Mathematical Physics. Applied Mathematical Sciences, Vol. 108, Springer-Verlag, New York, 1995. Zbl 0834.46002, MR 1347691, 10.1007/978-1-4612-0815-0
.

Files

Files Size Format View
ActaOlom_51-2012-2_3.pdf 262.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo