Previous |  Up |  Next

Article

Title: Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra (English)
Author: Cīrulis, Jānis
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 2
Year: 2012
Pages: 41-51
Summary lang: English
.
Category: math
.
Summary: Let $A := (A,\rightarrow ,1)$ be a Hilbert algebra. The monoid of all unary operations on $A$ generated by operations $\alpha _p\colon x \mapsto (p \rightarrow x)$, which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of $A$. This semilattice is isomorphic to the semilattice of finitely generated filters of $A$, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of $A$. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of $A$, and the embedding of $A$ into this extension preserves all existing joins and certain “compatible” meets. (English)
Keyword: adjoint semilattice
Keyword: Brouwerian extension
Keyword: closure endomorphism
Keyword: compatible meet
Keyword: filter
Keyword: Hilbert algebra
Keyword: implicative semilattice
Keyword: subtraction
MSC: 03G25
MSC: 06A12
MSC: 06A15
MSC: 08A35
idZBL: Zbl 06204929
idMR: MR3058872
.
Date available: 2012-11-26T10:16:42Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/143066
.
Reference: [1] Cīrulis, J.: Multipliers in implicative algebras. Bull. Sect. Log. (Łódź) 15 (1986), 152–158. Zbl 0634.03067, MR 0907610
Reference: [2] Cīrulis, J.: Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra. In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34. Zbl 1082.03056, MR 2166943
Reference: [3] Cīrulis, J.: Hilbert algebras as implicative partial semilattices. Centr. Eur. J. Math. 5 (2007), 264–279. Zbl 1125.03047, MR 2300273, 10.2478/s11533-007-0008-2
Reference: [4] Curry, H. B.: Foundations of Mathematical logic. McGraw-Hill, New York, 1963. Zbl 0163.24209, MR 0148529
Reference: [5] Diego, A.: Sur les algèbres de Hilbert. Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966. Zbl 0144.00105, MR 0199086
Reference: [6] Henkin, L.: An algebraic characterization of quantifiers. Fund. Math. 37 (1950), 63–74. Zbl 0041.34804, MR 0040234
Reference: [7] Horn, A.: The separation theorem of intuitionistic propositional calculus. Journ. Symb. Logic 27 (1962), 391–399. MR 0171706, 10.2307/2964545
Reference: [8] Huang, W., Liu, F.: On the adjoint semigroups of $p$-separable BCI-algebras. Semigroup Forum 58 (1999), 317–322. Zbl 0928.06012, MR 1678492, 10.1007/BF03325431
Reference: [9] Huang, W., Wang, D.: Adjoint semigroups of BCI-algebras. Southeast Asian Bull. Math. 19 (1995), 95–98. Zbl 0859.06016, MR 1366413
Reference: [10] Iseki, K., Tanaka, S.: An introduction in the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26. MR 0500283
Reference: [11] Karp, C. R.: Set representation theorems in implicative models. Amer. Math. Monthly 61 (1954), 523–523 (abstract).
Reference: [12] Karp, C. R.: Languages with expressions of infinite length. Univ. South. California, 1964 (Ph.D. thesis). Zbl 0127.00901, MR 0176910
Reference: [13] Kondo, M.: Relationship between ideals of BCI-algebras and order ideals of its adjoint semigroup. Int. J. Math. 28 (2001), 535–543. Zbl 1007.06014, MR 1895299, 10.1155/S0161171201010985
Reference: [14] Marsden, E. L.: Compatible elements in implicational models. J. Philos. Log. 1 (1972), 195–200. MR 0476504, 10.1007/BF00650494
Reference: [15] Schmidt, J.: Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications. In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428. MR 0472657
Reference: [16] Tsinakis, C.: Brouwerian semilattices determined by their endomorphism semigroups.. Houston J. Math. 5 (1979), 427–436. Zbl 0431.06003, MR 0559982
Reference: [17] Tsirulis, Ya. P.: Notes on closure endomorphisms of implicative semilattices. Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian). MR 0878277
.

Files

Files Size Format View
ActaOlom_51-2012-2_4.pdf 247.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo