| Title:
             | 
On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE (English) | 
| Author:
             | 
Rohleder, Martin | 
| Language:
             | 
English | 
| Journal:
             | 
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica | 
| ISSN:
             | 
0231-9721 | 
| Volume:
             | 
51 | 
| Issue:
             | 
2 | 
| Year:
             | 
2012 | 
| Pages:
             | 
107-127 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes. (English) | 
| Keyword:
             | 
singular ordinary differential equation of the second order | 
| Keyword:
             | 
time singularities | 
| Keyword:
             | 
unbounded domain | 
| Keyword:
             | 
asymptotic properties | 
| Keyword:
             | 
damped solutions | 
| Keyword:
             | 
oscillatory solutions | 
| MSC:
             | 
34A12 | 
| MSC:
             | 
34C11 | 
| MSC:
             | 
34C15 | 
| MSC:
             | 
34D05 | 
| idZBL:
             | 
Zbl 06204934 | 
| idMR:
             | 
MR3058877 | 
| . | 
| Date available:
             | 
2012-11-26T10:21:29Z | 
| Last updated:
             | 
2014-03-12 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143071 | 
| . | 
| Reference:
             | 
[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057 | 
| Reference:
             | 
[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation., J. Differ. Equations 118, 2 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079 | 
| Reference:
             | 
[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0 | 
| Reference:
             | 
[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3 | 
| Reference:
             | 
[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. Zbl 0782.34002 | 
| Reference:
             | 
[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. Zbl 1179.76062, MR 2335787, 10.1007/s10915-007-9141-0 | 
| Reference:
             | 
[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0 | 
| Reference:
             | 
[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, MR 1492076, 10.1006/jmaa.1997.5680 | 
| Reference:
             | 
[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004 | 
| Reference:
             | 
[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990. | 
| Reference:
             | 
[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. Zbl 1077.34505 | 
| Reference:
             | 
[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. Zbl 0807.34028, MR 1286741 | 
| Reference:
             | 
[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0 | 
| Reference:
             | 
[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl 1222.34035 | 
| Reference:
             | 
[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. Zbl 1190.34029, 10.1016/j.mcm.2009.10.042 | 
| Reference:
             | 
[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. Zbl 1190.34028, MR 2552066 | 
| Reference:
             | 
[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011 | 
| Reference:
             | 
[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. Zbl 1203.34058, MR 2652448 | 
| Reference:
             | 
[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. Zbl 1147.34024, MR 2309447 | 
| Reference:
             | 
[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086 | 
| . |