Previous |  Up |  Next

Article

Title: Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets (English)
Author: Jokar, Mahmood
Author: Lakestani, Mehrdad
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 5
Year: 2012
Pages: 939-957
Summary lang: English
.
Category: math
.
Summary: A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate results. An estimation of error bound for this method is presented and it is shown that in this method the matrix of coefficients is a sparse matrix. (English)
Keyword: telegraph equation
Keyword: trigonometric wavelets
Keyword: hermite interpolation
Keyword: operational matrix of derivative
MSC: 35L20
MSC: 65L60
MSC: 65T40
MSC: 65T60
idMR: MR3086861
.
Date available: 2012-12-17T13:34:52Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143091
.
Reference: [1] Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equation..SIAM J. Sci. Comput. 14 (1993), 159-184. MR 1201316, 10.1137/0914010
Reference: [2] Chui, C. K., Mhaskar, H. N.: On trigonometric wavelets..Constr. Approx. 9 (1993), 167-190. Zbl 0780.42020, MR 1215768, 10.1007/BF01198002
Reference: [3] Chui, C. K.: An Introduction to Wavelets..Academic Press, Boston 1992. Zbl 0925.42016, MR 1150048
Reference: [4] Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations..In: Stability and Convergence, Math. Z. 215 (1994), 583-620. Zbl 0794.65082, MR 1269492
Reference: [5] Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation..Numer. Methods Partial Differential Equations 21 (2005), 24-40. Zbl 1059.65072, MR 2100298, 10.1002/num.20019
Reference: [6] Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices..Math. Comput. Simulation 71 (2006), 16-30. Zbl 1089.65085, MR 2206903, 10.1016/j.matcom.2005.10.001
Reference: [7] Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition..Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 447-450.
Reference: [8] Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation..Numer. Methods Partial Differential Equations 24 (2008), 1080-1093. Zbl 1145.65078, MR 2419709, 10.1002/num.20306
Reference: [9] Dehghan, M., Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation..Numer. Methods Partial Differential Equations 25 (2009), 931-938. Zbl 1169.65102, MR 2526989, 10.1002/num.20382
Reference: [10] Gao, J., Jiang, Y. L.: Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel..J. Comput. Appl. Math. 215 (2008), 242-259. MR 2400631, 10.1016/j.cam.2007.04.010
Reference: [11] Kress, R.: Linear Integral Equations..Springer, New York 1989. Zbl 1151.45301, MR 1007594
Reference: [12] Lakestani, M., Dehghan, M.: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets..Internat. J. Comput. Math. 83 (2006), 8-9, 685-694. Zbl 1114.65090, MR 2288405, 10.1080/00207160601025656
Reference: [13] Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal wavelets approximation for Fredholm integro-differential equations..Math. Prob. Engrg. (2006), 1-12. 10.1155/MPE/2006/96184
Reference: [14] Lakestani, M., Saray, B. N.: Numerical solution of telegraph equation using interpolating scaling functions..Comput. Math. Appl. 60 (2010), 7, 1964-1972. Zbl 1205.65288, MR 2719716, 10.1016/j.camwa.2010.07.030
Reference: [15] Lakestani, M., Jokar, M., Dehghan, M.: Numerical solution of nth-Order Integro-Differential equations using trigonometric wavelets..Numer. Math. Methods Appl. Sci. 34 (2011), 11, 1317-1329. MR 2839375, 10.1002/mma.1439
Reference: [16] Lapidus, L., Pinder, G. F.: Numerical Solution of Partial Differential Equations in Science and Engineering..Wiley, New York 1982. Zbl 0929.65056, MR 0655597
Reference: [17] Lorentz, G. G.: Convergence theorems for polynomials with many zeros..Math. Z. 186 (1984), 117-123. Zbl 0524.42001, MR 0735055, 10.1007/BF01215495
Reference: [18] Lorentz, G. G., Lorentz, R. A.: Mathematics from Leningrad to Austin..In: Selected Works In Real, Functional And Numerical Analysis, (1997). Zbl 0874.01013
Reference: [19] Mohanty, R. K., Jain, M. K., George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients..J. Comput. Appl. Math. 72 (1996), 421-431. MR 1406226, 10.1016/0377-0427(96)00011-8
Reference: [20] Mohanty, R. K.: An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation..Appl. Math. Lett. 17 (2004), 101-105. Zbl 1046.65076, MR 2030658, 10.1016/S0893-9659(04)90019-5
Reference: [21] Mohanty, R. K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients..Appl. Math. Comput. 165 (2005), 229-236. Zbl 1070.65076, MR 2137041, 10.1016/j.amc.2004.07.002
Reference: [22] Mohebbi, A., Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation..Numer. Methods Partial Differential Equations 24 (2008), 1222-1235. Zbl 1151.65071, MR 2427188, 10.1002/num.20313
Reference: [23] Petersdorff, T. V., Schwab, C.: Wavelet approximation for first kind integral equations on polygons..Numer. Math. 74 (1996), 479-516. MR 1414419, 10.1007/s002110050226
Reference: [24] Quak, E.: Trigonometric wavelets for hermite interpolation..J. Math. Comput. 65 (1996), 683-722. Zbl 0873.42024, MR 1333324, 10.1090/S0025-5718-96-00719-3
Reference: [25] Shamsi, M., Razzaghi, M.: Solution of Hallen's integral equation using multiwavelets..Comput. Phys. Comm. 168 (2005), 187-197. Zbl 1196.65203, 10.1016/j.cpc.2005.01.016
Reference: [26] Shan, Z., Du, Q.: Trigonometric wavelet method for some elliptic boundary value problems..J. Math. Anal. Appl. 344 (2008), 1105-1119. Zbl 1149.65092, MR 2426337, 10.1016/j.jmaa.2008.03.062
Reference: [27] Twizell, E. H.: An explicit difference method for the wave equation with extended stability range..BIT 19 (1979), 378-383. Zbl 0441.65066, MR 0548617, 10.1007/BF01930991
.

Files

Files Size Format View
Kybernetika_48-2012-5_8.pdf 1.000Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo