[1] Akritas, M. G.:
Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 81 (1986), 1032-1038.
MR 0867628 |
Zbl 0635.62032
[2] Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A.:
Review of survival analyses published in cancer journals. British J. Cancer. 72 (1985), 511-518.
DOI 10.1038/bjc.1995.364
[6] Cox, D. R.:
Regression models and life-tables. J. R. Stat. Soc. Ser. B. 34 (1972), 187-220.
MR 0341758 |
Zbl 0243.62041
[8] Davison, A. C., Hinkley, D. V.:
Bootstrap Methods and Their Application. Cambridge University Press, Cambridge 1997.
MR 1478673 |
Zbl 0886.62001
[9] Efron, B.: The two sample problem with censored data. In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.
[11] Efron, B., Tibshirani, R. J.:
An Introduction to the Bootstrap. Chapman and Hall, New York 1993.
MR 1270903 |
Zbl 0835.62038
[12] Gill, R. D.:
Censoring and Stochastics Integrals. Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980.
MR 0596815
[26] Schmee, J., Hahn, G. J.:
A simple method for regression analysis with censored data (with discussion). Technometrics 21 (1979), 417-434.
DOI 10.1080/00401706.1979.10489811
[27] Stare, J., Heinzl, F., Harrel, F.: On the use of Buckley and James least squares regression for survival data. In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.
[31] Stute, W.:
Distributional convergence under random censorship when covariables are present. Scand. J. Stat. 23 (1996), 461-471.
MR 1439707 |
Zbl 0903.62045
[34] Stute, W., Wang, J. L.:
The jackknife estimate of a Kaplan-Meier integral. Biometrika 81 (1994), 602-606.
MR 1311103 |
Zbl 0809.62037
[36] Wei, L. J.:
The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11 (1992), 1871-1879.
DOI 10.1002/sim.4780111409
[38] Zhou, M.:
Two-sided bias bound of the Kaplan-Meier estimator. Probab. Theory and Related Fields 79 (1988), 165-173.
MR 0958286 |
Zbl 0631.62044