Previous |  Up |  Next

Article

Title: Bias correction on censored least squares regression models (English)
Author: Orbe, Jesus
Author: Núñez-Antón, Vicente
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 5
Year: 2012
Pages: 1045-1063
Summary lang: English
.
Category: math
.
Summary: This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal. (English)
Keyword: bias
Keyword: censoring
Keyword: least squares
Keyword: linear regression
Keyword: Kaplan–Meier estimator
MSC: 62F40
MSC: 62N01
idMR: MR3086868
.
Date available: 2012-12-17T13:46:51Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143098
.
Reference: [1] Akritas, M. G.: Bootstrapping the Kaplan-Meier estimator..J. Amer. Statist. Assoc. 81 (1986), 1032-1038. Zbl 0635.62032, MR 0867628
Reference: [2] Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A.: Review of survival analyses published in cancer journals..British J. Cancer. 72 (1985), 511-518. 10.1038/bjc.1995.364
Reference: [3] Buckley, J. J., James, I. R.: Linear regression with censored data..Biometrika 66 (1979), 429-436. Zbl 0425.62051, 10.1093/biomet/66.3.429
Reference: [4] Chatterjee, S., McLeish, D. L.: Fitting linear regression models to censored data by least squares and maximum likelihood methods..Comm. Statist. Theory Methods 15 (1986), 3227-3243. Zbl 0616.62093, MR 0860480, 10.1080/03610928608829305
Reference: [5] Chen, Y. Y., Hollander, M., Langberg, N. A.: Small sample results for the Kaplan-Meier estimator..J. Amer. Statist. Assoc. 77 (1982), 141-144. Zbl 0504.62033, MR 0648036, 10.1080/01621459.1982.10477777
Reference: [6] Cox, D. R.: Regression models and life-tables..J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. Zbl 0243.62041, MR 0341758
Reference: [7] Cox, D. R.: Partial likelihood..Biometrika 62 (1975), 269-276. Zbl 0312.62002, MR 0400509, 10.1093/biomet/62.2.269
Reference: [8] Davison, A. C., Hinkley, D. V.: Bootstrap Methods and Their Application..Cambridge University Press, Cambridge 1997. Zbl 0886.62001, MR 1478673
Reference: [9] Efron, B.: The two sample problem with censored data..In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.
Reference: [10] Efron, B.: Censored data and the bootstrap..J. Amer. Statist. Assoc. 76 (1981), 312-319. Zbl 0461.62039, MR 0624333, 10.1080/01621459.1981.10477650
Reference: [11] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap..Chapman and Hall, New York 1993. Zbl 0835.62038, MR 1270903
Reference: [12] Gill, R. D.: Censoring and Stochastics Integrals..Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. MR 0596815
Reference: [13] Heller, G., Simonoff, J. S.: A comparison of estimators for regression with a censored response variable..Biometrika 77 (1990), 515-520. MR 1087841, 10.1093/biomet/77.3.515
Reference: [14] Jin, Z., Lin, D., Wei, L. J., Ying, Z.: Rank-based inference for the accelerated failure time model..Biometrika 90 (2003), 341-353. Zbl 1034.62103, MR 1986651, 10.1093/biomet/90.2.341
Reference: [15] Kaplan, E. L., Meier, P.: Nonparametric estimation from incomplete observations..J. Amer. Statist. Assoc. 53 (1958), 457-481. Zbl 0089.14801, MR 0093867, 10.1080/01621459.1958.10501452
Reference: [16] Koul, H., Susarla, V., Van-Ryzin, J.: Regression analysis with randomly right-censored data..Ann. Statist. 9 (1981), 1279-1288. Zbl 0477.62046, MR 0630110, 10.1214/aos/1176345644
Reference: [17] Lai, T. L., Ying, Z.: Linear rank statistics in regression analysis with censored or truncated data..J. Multivariate Anal. 40 (1992), 13-45. Zbl 0799.62071, MR 1149249, 10.1016/0047-259X(92)90088-W
Reference: [18] Leurgans, S.: Linear models, random censoring and synthetic data..Biometrika 74 (1987), 301-309. Zbl 0649.62068, MR 0903130, 10.2307/2336144
Reference: [19] Mauro, D.: A combinatoric approach to the Kaplan-Meier estimator..Ann. Statist. 13 (1985), 142-149. Zbl 0575.62043, MR 0773158, 10.1214/aos/1176346582
Reference: [20] Miller, R. G.: Least squares regression with censored data..Biometrika 63 (1976), 449-464. Zbl 0344.62058, MR 0458737, 10.1093/biomet/63.3.449
Reference: [21] Miller, R. G., Halpern, J.: Regression with censored data..Biometrika 69 (1982), 521-531. Zbl 0503.62091, MR 0695199, 10.1093/biomet/69.3.521
Reference: [22] Orbe, J., Ferreira, E., Núñez-Antón, V.: Censored partial regression..Biostatistics 4 (2003), 109-121. Zbl 1139.62307, 10.1093/biostatistics/4.1.109
Reference: [23] Reid, N.: Estimating the median survival time..Biometrika 68 (1981), 601-608. Zbl 0479.62029, MR 0637777, 10.1093/biomet/68.3.601
Reference: [24] Reid, N.: A conversation with Sir David Cox..Statist. Sci. 9 (1994), 439-455. Zbl 0955.01543, MR 1325436, 10.1214/ss/1177010394
Reference: [25] Ritov, Y.: Estimation in a linear regression model with censored data..Ann. Statist. 18 (1990), 303-328. Zbl 0713.62045, MR 1041395, 10.1214/aos/1176347502
Reference: [26] Schmee, J., Hahn, G. J.: A simple method for regression analysis with censored data (with discussion)..Technometrics 21 (1979), 417-434. 10.1080/00401706.1979.10489811
Reference: [27] Stare, J., Heinzl, F., Harrel, F.: On the use of Buckley and James least squares regression for survival data..In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.
Reference: [28] Stute, W.: Consistent estimation under random censorship when covariables are present..J. Multivariate Anal. 45 (1993), 89-103. Zbl 0767.62036, MR 1222607, 10.1006/jmva.1993.1028
Reference: [29] Stute, W.: The bias of Kaplan-Meier integrals..Scand. J. Stat. 21 (1994), 475-484. Zbl 0812.62042, MR 1310090
Reference: [30] Stute, W.: Improved estimation under random censorship..Comm. Statist. Theory Methods 23 (1994), 2671-2682. Zbl 0825.62226, MR 1294919, 10.1080/03610929408831409
Reference: [31] Stute, W.: Distributional convergence under random censorship when covariables are present..Scand. J. Stat. 23 (1996), 461-471. Zbl 0903.62045, MR 1439707
Reference: [32] Stute, W.: The jackknife estimate of variance of a Kaplan-Meier integral..Ann. Statist. 24 (1996), 2679-2704. Zbl 0878.62027, MR 1425974, 10.1214/aos/1032181175
Reference: [33] Stute, W.: Nonlinear censored regression..Statist. Sinica 9 (1999), 1089-1102. Zbl 0940.62061, MR 1744826
Reference: [34] Stute, W., Wang, J. L.: The jackknife estimate of a Kaplan-Meier integral..Biometrika 81 (1994), 602-606. Zbl 0809.62037, MR 1311103
Reference: [35] Tsiatis, A. A.: Estimating regression parameters using linear rank tests for censored data..Ann. Statist. 18 (1990), 354-372. Zbl 0701.62051, MR 1041397, 10.1214/aos/1176347504
Reference: [36] Wei, L. J.: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis..Stat. Med. 11 (1992), 1871-1879. 10.1002/sim.4780111409
Reference: [37] Wellner, J. A.: A heavy censoring limit theorem for the product limit estimator..Ann. Statist. 13 (1985), 150-162. Zbl 0609.62061, MR 0773159, 10.1214/aos/1176346583
Reference: [38] Zhou, M.: Two-sided bias bound of the Kaplan-Meier estimator..Probab. Theory and Related Fields 79 (1988), 165-173. Zbl 0631.62044, MR 0958286
.

Files

Files Size Format View
Kybernetika_48-2012-5_15.pdf 330.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo