Previous |  Up |  Next

Article

Title: A new variational characterization of compact conformally flat 4-manifolds (English)
Author: Wu, Faen
Author: Zhao, Xinnuan
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 2
Year: 2012
Pages: 71-77
Summary lang: English
.
Category: math
.
Summary: In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional $$ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,$$ where $$(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}$$ $$L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,$$ then $(M^{4},g)$ is either scalar flat or a space form. (English)
Keyword: conformally flat
Keyword: 4-manifold
Keyword: variational characterization
MSC: 53C20
MSC: 53C25
idZBL: Zbl 06165035
idMR: MR3032804
.
Date available: 2013-01-28T10:19:05Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143138
.
Reference: [1] Berger, M.: Riemannian geometry during the second half of the twentieth century.2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI, Zbl 0944.53001, MR 1729907
Reference: [2] Besse, A. L.: Einstein Manifolds.1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York, Zbl 0613.53001, MR 0867684
Reference: [3] Chang, S.-Y. A., Gursky, M. J., Yang, P.: An equation of Monge-Ampere type in conformal georemtry and four manifolds of positive Ricci curvature.Ann. Math., 155, 3, 2002, 709-787, MR 1923964, 10.2307/3062131
Reference: [4] Gursky, M. J.: Locally conformally flat 4 and 6 manifolds of positive scalar curvature and positive Euler characteristic.Indiana Univ. Math. J., 43, 1994, 747-774, MR 1305946, 10.1512/iumj.1994.43.43033
Reference: [5] Gursky, M. J.: Manifolds with $\delta W^{+}=0$ and Einstein constant of the sphere.Math. Ann., 318, 3, 2000, 417-431, Zbl 1034.53032, MR 1800764, 10.1007/s002080000130
Reference: [6] Gursky, M. J., Viaclovsky, J. A.: A new variational characterization of three-dimensional space forms.Invent. Math., 145, 2001, 251-278, Zbl 1006.58008, MR 1872547, 10.1007/s002220100147
Reference: [7] Hu, Z. J., Li, H. Z.: A new variational characterization of n-dimensional space forms.Trans. Amer. Math. Soc., 356, 8, 2004, 3005-3023, Zbl 1058.53029, MR 2052939, 10.1090/S0002-9947-03-03486-X
Reference: [8] Lanczos, C.: A remarkable property of the riemann-Christoffel tensor in four dimentions.Ann. Math., 39, 4, 1938, 842-850, MR 1503440, 10.2307/1968467
Reference: [9] LeBrun, C., Maskit, B.: On optimal 4-manifolds metrics.J. Georem. Anal., 18, 2, 2008, 537-564, MR 2393270, 10.1007/s12220-008-9019-x
Reference: [10] Reilly, R. C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477, Zbl 0277.53030, MR 0341351
Reference: [11] Rosenberg, S.: The Variation of the de Rham zeta function.Trans. Amer. Math. Soc., 299, 2, 1987, 535-557, Zbl 0615.53033, MR 0869220, 10.1090/S0002-9947-1987-0869220-4
Reference: [12] Schoen, R.: Variation theory for the total scalar curvature functional for Riemannian metrics and related topics.Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154, MR 0994021
Reference: [13] Wu, Faen: On the variation of a metric and it's application.Acta. Math. Sinica, 26, 10, 2010, 2003-2014, MR 2718097, 10.1007/s10114-010-7470-7
.

Files

Files Size Format View
ActaOstrav_20-2012-2_1.pdf 447.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo