Title:
|
A new variational characterization of compact conformally flat 4-manifolds (English) |
Author:
|
Wu, Faen |
Author:
|
Zhao, Xinnuan |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
20 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
71-77 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional $$ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,$$ where $$(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}$$ $$L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,$$ then $(M^{4},g)$ is either scalar flat or a space form. (English) |
Keyword:
|
conformally flat |
Keyword:
|
4-manifold |
Keyword:
|
variational characterization |
MSC:
|
53C20 |
MSC:
|
53C25 |
idZBL:
|
Zbl 06165035 |
idMR:
|
MR3032804 |
. |
Date available:
|
2013-01-28T10:19:05Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143138 |
. |
Reference:
|
[1] Berger, M.: Riemannian geometry during the second half of the twentieth century.2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI, Zbl 0944.53001, MR 1729907 |
Reference:
|
[2] Besse, A. L.: Einstein Manifolds.1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York, Zbl 0613.53001, MR 0867684 |
Reference:
|
[3] Chang, S.-Y. A., Gursky, M. J., Yang, P.: An equation of Monge-Ampere type in conformal georemtry and four manifolds of positive Ricci curvature.Ann. Math., 155, 3, 2002, 709-787, MR 1923964, 10.2307/3062131 |
Reference:
|
[4] Gursky, M. J.: Locally conformally flat 4 and 6 manifolds of positive scalar curvature and positive Euler characteristic.Indiana Univ. Math. J., 43, 1994, 747-774, MR 1305946, 10.1512/iumj.1994.43.43033 |
Reference:
|
[5] Gursky, M. J.: Manifolds with $\delta W^{+}=0$ and Einstein constant of the sphere.Math. Ann., 318, 3, 2000, 417-431, Zbl 1034.53032, MR 1800764, 10.1007/s002080000130 |
Reference:
|
[6] Gursky, M. J., Viaclovsky, J. A.: A new variational characterization of three-dimensional space forms.Invent. Math., 145, 2001, 251-278, Zbl 1006.58008, MR 1872547, 10.1007/s002220100147 |
Reference:
|
[7] Hu, Z. J., Li, H. Z.: A new variational characterization of n-dimensional space forms.Trans. Amer. Math. Soc., 356, 8, 2004, 3005-3023, Zbl 1058.53029, MR 2052939, 10.1090/S0002-9947-03-03486-X |
Reference:
|
[8] Lanczos, C.: A remarkable property of the riemann-Christoffel tensor in four dimentions.Ann. Math., 39, 4, 1938, 842-850, MR 1503440, 10.2307/1968467 |
Reference:
|
[9] LeBrun, C., Maskit, B.: On optimal 4-manifolds metrics.J. Georem. Anal., 18, 2, 2008, 537-564, MR 2393270, 10.1007/s12220-008-9019-x |
Reference:
|
[10] Reilly, R. C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477, Zbl 0277.53030, MR 0341351 |
Reference:
|
[11] Rosenberg, S.: The Variation of the de Rham zeta function.Trans. Amer. Math. Soc., 299, 2, 1987, 535-557, Zbl 0615.53033, MR 0869220, 10.1090/S0002-9947-1987-0869220-4 |
Reference:
|
[12] Schoen, R.: Variation theory for the total scalar curvature functional for Riemannian metrics and related topics.Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154, MR 0994021 |
Reference:
|
[13] Wu, Faen: On the variation of a metric and it's application.Acta. Math. Sinica, 26, 10, 2010, 2003-2014, MR 2718097, 10.1007/s10114-010-7470-7 |
. |