Previous |  Up |  Next

Article

Title: Thinness and non-tangential limit associated to coupled PDE (English)
Author: Benyaiche, Allami
Author: Ghiate, Salma
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 41-51
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the reduit, the thinness and the non-tangential limit associated to a harmonic structure given by coupled partial differential equations. In particular, we obtain such results for biharmonic equation (i.e. $\triangle^{2}\varphi= 0$) and equations of $\triangle^{2}\varphi= \varphi$ type. (English)
Keyword: thinness
Keyword: non-tangential limit
Keyword: Martin boundary
Keyword: biharmonic functions
Keyword: coupled partial differential equations
MSC: 31B10
MSC: 31B30
MSC: 31C35
MSC: 60J50
idMR: MR3038070
.
Date available: 2013-02-21T14:02:32Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143151
.
Reference: [1] Armitage D.H., Stephen J.G.: Classical Potential Theory.Springer, London, 2001. Zbl 0972.31001, MR 1801253
Reference: [2] Benyaiche A., Ghiate S.: Frontière de Martin biharmonique.preprint, 2000.
Reference: [3] Benyaiche A., Ghiate S.: Propriété de moyenne restreinte associée à un système d'E.D.P..Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 125–143. MR 2056415
Reference: [4] Benyaiche A., Ghiate S.: Martin boundary associated with a system of PDE.Comment. Math. Univ. Carolin. 47 (2006), no. 3, 399-425. Zbl 1132.31005, MR 2281003
Reference: [5] Benyaiche A.: On potential theory associated to a coupled PDE.in Complex Analysis and Potential Theory, T.A. Azeroglu and P.M. Tamrazov, eds., Proceedings of the Conference Satellite to ICM 2006, World Sci. Publ., Hackensack, NJ, 2007, pp. 178–186. Zbl 1151.31010, MR 2368350
Reference: [6] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage.Universitext, Springer, Berlin, 1986. Zbl 0706.31001, MR 0850715
Reference: [7] Boukricha A.: Espaces biharmoniques.in G. Mokobodzki and D. Pinchon, eds., Théorie du Potentiel (Orsay, 1983), pp. 116–149, Lecture Notes in Mathematics, 1096, Springer, Berlin, 1984. Zbl 0567.31006, MR 0890356
Reference: [8] Brelot M.: On Topologies and Boundaries in Potential Theory.Lecture Notes in Mathematics, 175, Springer, Berlin-New York, 1971. Zbl 0277.31002, MR 0281940
Reference: [9] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces.Springer, New York-Heidelberg, 1972. Zbl 0248.31011, MR 0419799
Reference: [10] Doob J.L.: Classical Potential Theory and its Probabilistics Conterpart.Springer, New York, 1984. MR 0731258
Reference: [11] Hansen W.: Modification of balayage spaces by transitions with application to coupling of PDE's.Nagoya Math. J. 169 (2003), 77–118. Zbl 1094.31005, MR 1962524
Reference: [12] Smyrnélis E.P.: Axiomatique des fonctions biharmoniques, I.Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 35–98. Zbl 0295.31006, MR 0382691, 10.5802/aif.544
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_4.pdf 238.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo