Title:
|
Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets (English) |
Author:
|
Banaś, Józef |
Author:
|
Ben Amar, Afif |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
21-40 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we prove a collection of new fixed point theorems for operators of the form $T+S$ on an unbounded closed convex subset of a Hausdorff topological vector space $(E,\Gamma)$. We also introduce the concept of demi-$\tau$-compact operator and $\tau$-semi-closed operator at the origin. Moreover, a series of new fixed point theorems of Krasnosel'skii type is proved for the sum $T+S$ of two operators, where $T$ is $\tau$-sequentially continuous and $\tau$-compact while $S$ is $\tau$-sequentially continuous (and $\Phi_{\tau}$-condensing, $\Phi_{\tau}$-nonexpansive or nonlinear contraction or nonexpansive). The main condition in our results is formulated in terms of axiomatic $\tau$-measures of noncompactness. Apart from that we show the applicability of some our results to the theory of integral equations in the Lebesgue space. (English) |
Keyword:
|
$\tau$-measure of noncompactness |
Keyword:
|
$\tau$-sequential continuity |
Keyword:
|
$\Phi_{\tau}$-condensing operator |
Keyword:
|
$\Phi_{\tau}$-nonexpansive operator |
Keyword:
|
nonlinear contraction |
Keyword:
|
fixed point theorem |
Keyword:
|
demi-$\tau$-compactness |
Keyword:
|
operator $\tau$-semi-closed at origin |
Keyword:
|
Lebesgue space |
Keyword:
|
integral equation |
MSC:
|
47H10 |
idMR:
|
MR3038069 |
. |
Date available:
|
2013-02-21T14:01:16Z |
Last updated:
|
2015-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143150 |
. |
Reference:
|
[1] Appell J., De Pascale E.: Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi funzioni misurabili.Boll. Un. Mat. Ital. B (6) 3 (1984), 497–515. MR 0762715 |
Reference:
|
[2] Appell J., Zabrejko P.P.: Nonlinear Superposition Operators.Cambridge University Press, Cambridge, 1990. Zbl 1156.47052, MR 1066204 |
Reference:
|
[3] Arino O., Gautier S., Penot J.P.: A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations.Funkcial. Ekvac. 27 (1984), no. 3, 273–279. Zbl 0599.34008, MR 0794756 |
Reference:
|
[4] Banaś J.: Demicontinuity and weak sequential continuity of operators in the Lebesgue space.Proceedings of the 1st Polish Symposium on Nonlinear Analysis, 1997, pp. 124–129. |
Reference:
|
[5] Banaś J.: Applications of measures of weak noncompcatness and some classes of operators in the theory of functional equations in the Lebesgue space.Nonlinear Anal. 30 (1997), no. 6, 3283–3293. MR 1602984, 10.1016/S0362-546X(96)00157-5 |
Reference:
|
[6] Barroso C.S.: Krasnoselskii's fixed point theorem for weakly continuous maps.Nonlinear Anal. 55 (2003), 25–31. Zbl 1042.47035, MR 2001629, 10.1016/S0362-546X(03)00208-6 |
Reference:
|
[7] Barroso C.S., Teixeira E.V.: A topological and geometric approach to fixed point results for sum of operators and applications.Nonlinear Anal. 60 (2005), no. 4, 625–660. MR 2109150 |
Reference:
|
[8] Barroso C.S., Kalenda O.F.K., Rebouas M.P.: Optimal approximate fixed point results in locally convex spaces.J. Math. Anal. Appl. 401 (2013), no. 1, 1–8. MR 3011241, 10.1016/j.jmaa.2012.10.026 |
Reference:
|
[9] Ben Amar A., Jeribi A., Mnif M.: On a generalization of the Schauder and Krasnosel'skii fixed point theorems on Dunford-Pettis space and applications.Math. Methods Appl. Sci. 28 (2006), 1737–1756. 10.1002/mma.639 |
Reference:
|
[10] Ben Amar A., Jeribi A., Mnif M.: Some fixed point theorems and application to biological model.Numer. Funct. Anal. Optim. 29 (2008), no. 1–2, 1-23. Zbl 1130.47305, MR 2387835, 10.1080/01630560701749482 |
Reference:
|
[11] Ben Amar A., Mnif M.: Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation.Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. Zbl 1193.47056, MR 2591226 |
Reference:
|
[12] Ben Amar A., Xu S.: Measures of weak noncompactness and fixed point theory for $1$-set weakly contractive operators on unbounded domains.Anal. Theory Appl. 27 (2011), no. 3, 224–238. MR 2844659, 10.1007/s10496-011-0224-2 |
Reference:
|
[13] Boyd D.W., Wong J.S.W.: On nonlinear contractions.Proc. Amer. Math. Soc. 20 (1969), 458–464. Zbl 0175.44903, MR 0239559, 10.1090/S0002-9939-1969-0239559-9 |
Reference:
|
[14] Burton T.A.: A fixed point theorem of Krasnosel'skii.Appl. Math. Lett. 11 (1998), 85–88. MR 1490385, 10.1016/S0893-9659(97)00138-9 |
Reference:
|
[15] Day M.M.: Normed Linear Spaces.Academic Press, New York, 1962. Zbl 0583.00016, MR 0145316 |
Reference:
|
[16] De Blasi F.S.: On a property of the unit sphere in Banach space.Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. MR 0482402 |
Reference:
|
[17] Dunford N., Pettis B.J.: Linear operators on summable functions]/.Trans. Amer. Math. Soc. 47 (1940), 323–392. MR 0002020, 10.1090/S0002-9947-1940-0002020-4 |
Reference:
|
[18] Dunford N., Schwartz J.T.: Linear Operators, Part I.Interscience, Leyden, 1963. Zbl 0635.47001 |
Reference:
|
[19] Edwards R.E.: Functional Analysis, Theory and Applications.Holt, Reinhard and Winston, New York, 1965. Zbl 0189.12103, MR 0221256 |
Reference:
|
[20] Garcia-Falset J.: Existence of fixed points and measures of weak noncompactness.Nonlinear Anal. 71 (2009), 2625–2633. Zbl 1194.47060, MR 2532788, 10.1016/j.na.2009.01.096 |
Reference:
|
[21] Krasnosel'skii M.A.: On the continuity of the operator $Fu(x)=f(x,u(x))$.Dokl. Akad. Nauk SSSR 77 (1951), 185–188 (in Russian). MR 0041354 |
Reference:
|
[22] Krasnosel'skii M.A.: Two remarks on the method of successive approximation.Uspehi Mat. Nauk 10 (1955), 123–127 (in Russian). MR 0068119 |
Reference:
|
[23] Krasnosel'skii M.A., Zabrejko P.P., Pustyl'nik J.I., Sobolevskii P.J.: Integral Opertors in Spaces of Summable Functions.Noordhoff, Leyden, 1976. |
Reference:
|
[24] Kubiaczyk I.: On a fixed point theorem for weakly sequentially continuous mappings.Discuss. Math. Differential Incl. 15 (1995), 15–20. Zbl 0832.47046, MR 1344524 |
Reference:
|
[25] O'Regan D.: Fixed-point theory for weakly sequentially continuous mappings.Math. Comput. Modelling 27 (1998), no. 5, 1–14. Zbl 1185.34026, MR 1616796, 10.1016/S0895-7177(98)00014-4 |
Reference:
|
[26] O'Regan D., Taoudi M.A.: Fixed point theorems for the sum of two weakly sequentially continuous mappins.Nonlinear Anal. 73 (2010), 283–289. MR 2650815, 10.1016/j.na.2010.03.009 |
Reference:
|
[27] V.I. Shragin: On the weak continuity of the Nemytskii operator.Uchen. Zap. Mosk. Obl. Ped. Inst. 57 (1957), 73–79. |
Reference:
|
[28] Taoudi M.A.: Krasnosel'skii type fixed point theorems under weak topology features.Nonlin. Anal. 72 (2010), no. 1, 478–482. Zbl 1225.47071, MR 2574957, 10.1016/j.na.2009.06.086 |
Reference:
|
[29] Zabrejko P.P., Koshelev A.I., Krasnosel'skii M.A., Mikhlin S.G., Rakovshchik L.S., Stecenko V.J.: Integral Equations.Noordhoff, Leyden, 1975. |
. |