Previous |  Up |  Next

Article

Title: Lonely points revisited (English)
Author: Verner, Jonathan L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 105-110
Summary lang: English
.
Category: math
.
Summary: In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point $p\in X$ is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space ${\mathcal G}_\omega$ from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745--748] to construct lonely points in $\omega^*$. This answers the question of P. Simon posed in our paper Lonely points in $\omega^*$, Topology Appl. 155 (2008), no. 16, 1766--1771. (English)
Keyword: $\beta\omega$
Keyword: lonely point
Keyword: weak P-point
Keyword: irresolvable spaces
MSC: 54D40
MSC: 54D80
MSC: 54G05
idMR: MR3038075
.
Date available: 2013-02-21T14:08:55Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143156
.
Reference: [1] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125–139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [2] Dow A., Gubbi A.V., Szymański A.: Rigid Stone spaces within ZFC.Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748. MR 0929014
Reference: [3] Engelking R.: General Topology.Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Frolík Z.: Nonhomogeneity of $\beta P-P$.Comment. Math. Univ. Carolin. 8 (1967), 705–709. MR 0266160
Reference: [5] Frolík Z.: Sums of ultrafilters.Bull. Amer. Math. Soc. 73 (1967), 87–91. Zbl 0166.18602, MR 0203676, 10.1090/S0002-9904-1967-11653-7
Reference: [6] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (19430), 309–333. Zbl 0060.39407, MR 0008692, 10.1215/S0012-7094-43-01029-4
Reference: [7] Katětov M.: On topological spaces containing no disjoint dense subsets.Mat. Sbornik N.S. 21(63) (1947), 3–12. MR 0021679
Reference: [8] Kunen K.: Weak $P$-points in $N^*$.Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749. Zbl 0435.54021, MR 0588822
Reference: [9] van Mill J.: Sixteen types in $\beta\omega-\omega$.Topology Appl. 13 (1982), 43–57. MR 0637426
Reference: [10] Rudin W.: Homogeneity problems in the theory of Čech compactifications.Duke Math. J. 23 (1956), 409–419. Zbl 0073.39602, MR 0080902, 10.1215/S0012-7094-56-02337-7
Reference: [11] Simon P.: Applications of independent linked families.Colloq. Math. Soc. János Bolyai, 41, North-Holland, Amsterdam, 1985, pp. 561–580. Zbl 0615.54004, MR 0863940
Reference: [12] Verner J.: Lonely points in $\omega^*$.Topology Appl. 155 (2008), no. 16, 1766–1771. Zbl 1152.54021, MR 2445298, 10.1016/j.topol.2008.05.020
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_9.pdf 204.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo