Previous |  Up |  Next

Article

Title: Involutive birational transformations of arbitrary complexity in Euclidean spaces (English)
Author: Dušek, Zdeněk
Author: Kowalski, Oldřich
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 111-117
Summary lang: English
.
Category: math
.
Summary: A broad family of involutive birational transformations of an open dense subset of $\mathbb R^n$ onto itself is constructed explicitly. Examples with arbitrarily high complexity are presented. Construction of birational transformations such that $\phi^k= \mathrm{Id}$ for a fixed integer $k>2$ is also presented. (English)
Keyword: rational mapping
Keyword: birational transformation
Keyword: involutive transformation
MSC: 14E05
idMR: MR3038076
.
Date available: 2013-02-21T14:09:43Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143157
.
Reference: [1] Dolgachev I.: Lectures on Cremona transformations.Ann Arbor-Rome, 2010/2011.
Reference: [2] Dušek Z.: Scalar invariants on special spaces of equiaffine connections.J. Lie Theory 20 (2010), 295–309. Zbl 1206.53014, MR 2681371
Reference: [3] Dušek Z., Kowalski, O.: Involutive automorphisms related with standard representations of ${\mathrm{SL}}(2,\mathbb R)$.Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 523–533.
Reference: [4] Gómez A., Meiss J.D.: Reversors and symmetries for polynomial automorphisms of the complex plane.Nonlinearity 17 (2004), 975–1000. Zbl 1046.37024, MR 2057136, 10.1088/0951-7715/17/3/012
Reference: [5] Hartshorne R.: Algebraic Geometry.Graduate Texts in Mathematics, 52, Springer, New York-Heidelberg, 1977. Zbl 0531.14001, MR 0463157
Reference: [6] Repnikov V.D.: On an involutive mapping of solutions of differential equations.Differential Equations 43 (2007), no. 10, 1376–1381. Zbl 1210.34014, MR 2397526, 10.1134/S0012266107100059
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_10.pdf 202.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo