Previous |  Up |  Next

Article

Title: Integer matrices related to Liouville's function (English)
Author: Oon, Shea-Ming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 39-46
Summary lang: English
.
Category: math
.
Summary: In this note, we construct some integer matrices with determinant equal to certain summation form of Liouville's function. Hence, it offers a possible alternative way to explore the Prime Number Theorem by means of inequalities related to matrices, provided a better estimate on the relation between the determinant of a matrix and other information such as its eigenvalues is known. Besides, we also provide some comparisons on the estimate of the lower bound of the smallest singular value. Such discussion may be extended to that of Riemann hypothesis. (English)
Keyword: Liouville's function
Keyword: determinant
Keyword: LU decomposition
MSC: 11A25
MSC: 11C20
MSC: 15A15
MSC: 15B36
idZBL: Zbl 1274.11012
idMR: MR3035495
DOI: 10.1007/s10587-013-0002-8
.
Date available: 2013-03-01T16:00:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143168
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics New York-Heidelberg-Berlin: Springer (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Bordellès, O., Cloître, B.: A matrix inequality for Möbius functions.JIPAM, J. Inequal. Pure Appl. Math. 10 (2009), Paper No. 62, pp. 9, electronic only. Zbl 1190.15024, MR 2551085
Reference: [3] Higham, N. J.: A survey of condition number estimation for triangular matrices.SIAM Rev. 29 575-596 (1987). Zbl 0635.65049, MR 0917696, 10.1137/1029112
Reference: [4] Hong, Y. P., Pan, C.-T.: A lower bound for the smallest singular value.Linear Algebra Appl. 172 27-32 (1992). Zbl 0768.15012, MR 1168494
Reference: [5] Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Erster Band.Leipzig u. Berlin: B. G. Teubner. X (1909).
Reference: [6] Redheffer, R.: Eine explizit lösbare Optimierungsaufgabe.Numer. Meth. Optim.-Aufg. 36 213-216 (1977). Zbl 0363.65062, MR 0468170
Reference: [7] Tenenbaum, G.: Introduction à la Théorie Analytique et Probabiliste des Nombres.Cours Spécialisés 1 Paris: Société Mathématique de France (1995). Zbl 0880.11001, MR 1366197
.

Files

Files Size Format View
CzechMathJ_63-2013-1_2.pdf 225.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo