Previous |  Up |  Next

Article

Title: On the energy and spectral properties of the he matrix of hexagonal systems (English)
Author: Bhatti, Faqir M.
Author: Das, Kinkar Ch.
Author: Ahmed, Syed A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 47-63
Summary lang: English
.
Category: math
.
Summary: The He matrix, put forward by He and He in 1989, is designed as a means for uniquely representing the structure of a hexagonal system (= benzenoid graph). Observing that the He matrix is just the adjacency matrix of a pertinently weighted inner dual of the respective hexagonal system, we establish a number of its spectral properties. Afterwards, we discuss the number of eigenvalues equal to zero of the He matrix of a hexagonal system. Moreover, we obtain a relation between the number of triangles and the eigenvalues of the He matrix of a hexagonal system. Finally, we present an upper bound on the He energy of hexagonal systems. (English)
Keyword: molecular graph
Keyword: hexagonal system
Keyword: inner dual
Keyword: He matrix
Keyword: spectral radius
Keyword: eigenvalue
Keyword: energy of graph
MSC: 05C10
MSC: 05C30
MSC: 68R10
MSC: 81Q30
idZBL: Zbl 1274.05224
idMR: MR3035496
DOI: 10.1007/s10587-013-0003-7
.
Date available: 2013-03-01T16:01:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143169
.
Reference: [1] Baxter, R. J.: Hard hexagons: exact solution.J. Phys. A 13 (1980), L61--L70. MR 0560533, 10.1088/0305-4470/13/3/007
Reference: [2] Baxter, R. J.: Exactly Solved Models in Statistical Mechanics.Academic Press London (1982). Zbl 0538.60093, MR 0690578
Reference: [3] Biggs, N.: Algebraic Graph Theory.Cambridge Tracts in Mathematics Cambridge University Press London (1973). MR 1271140
Reference: [4] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics. 92 American Mathematical Society (1997). Zbl 0867.05046, MR 1421568
Reference: [5] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Encyclopedia of Mathematics and Its Applications. 66 Cambridge University Press (1997). MR 1440854
Reference: [6] Das, K. C., Bhatti, F. M., Lee, S.-G., Gutman, I.: Spectral Properties of the He Matrix of Hexagonal Systems.MATCH Commun. Math. Comput. Chem. (2011), 753-774. MR 2829393
Reference: [7] Gantmacher, F. R.: The Theory of Matrices.Vol. 2, Reprint of the 1959 translation AMS Chelsea Publishing (1974). MR 0107649
Reference: [8] Gutman, I., Zhou, B.: Laplacian energy of a graph.Linear Algebra Appl. 414 (2006), 29-37. Zbl 1092.05045, MR 2209232
Reference: [9] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press (1985). Zbl 0576.15001, MR 0832183
Reference: [10] Sachs, H.: Perfect matchings in hexagonal systems.Combinatorica 4 (1984), 89-99. Zbl 0542.05048, MR 0739417, 10.1007/BF02579161
Reference: [11] So, W., Robbiano, M., Abreu, N. M. M. de, Gutman, I.: Applications of a theorem by Ky Fan in the theory of graph energy.Linear Algebra Appl. 432 (2010), 2163-2169. Zbl 1218.05100, MR 2599850
.

Files

Files Size Format View
CzechMathJ_63-2013-1_3.pdf 318.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo