Previous |  Up |  Next

Article

Title: Canonical characters on simple graphs (English)
Author: Stojadinović, Tanja
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 107-113
Summary lang: English
.
Category: math
.
Summary: A multiplicative functional on a graded connected Hopf algebra is called the character. Every character decomposes uniquely as a product of an even character and an odd character. We apply the character theory of combinatorial Hopf algebras to the Hopf algebra of simple graphs. We derive explicit formulas for the canonical characters on simple graphs in terms of coefficients of the chromatic symmetric function of a graph and of canonical characters on quasi-symmetric functions. These formulas and properties of characters are used to derive some interesting numerical identities relating multinomial and central binomial coefficients. (English)
Keyword: Hopf algebra
Keyword: simple graph
Keyword: quasi-symmetric function
Keyword: character
MSC: 05C25
MSC: 05E05
MSC: 16T30
idZBL: Zbl 1274.05220
idMR: MR3035500
DOI: 10.1007/s10587-013-0007-3
.
Date available: 2013-03-01T16:05:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143173
.
Reference: [1] Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized DehnSommerville relations.Compos. Math. 142 (2006), 1-30. MR 2196760, 10.1112/S0010437X0500165X
Reference: [2] Aguiar, M., Hsiao, S. K.: Canonical characters on quasi-symmetric functions and bivariate Catalan numbers.Electron. J. Comb. 11 (2005), Research paper R15 34 pp. Zbl 1071.05072, MR 2120110
Reference: [3] Schmitt, W. R.: Incidence Hopf algebras.J. Pure Appl. Algebra 96 (1994), 299-330. Zbl 0808.05101, MR 1303288, 10.1016/0022-4049(94)90105-8
Reference: [4] Stanley, R.: A symmetric function generalization of the chromatic polynomial of a graph.Adv. Math. 111 (1995), 166-194. Zbl 0831.05027, MR 1317387, 10.1006/aima.1995.1020
.

Files

Files Size Format View
CzechMathJ_63-2013-1_7.pdf 226.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo