Previous |  Up |  Next

Article

Title: Extending the applicability of Newton's method using nondiscrete induction (English)
Author: Argyros, Ioannis K.
Author: Hilout, Saïd
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 115-141
Summary lang: English
.
Category: math
.
Summary: We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984. Under the same computational cost as before, we provide: weaker sufficient convergence conditions; tighter error estimates on the distances involved and more precise information on the location of the solution. Numerical examples are also provided in this study. (English)
Keyword: Newton's method
Keyword: Banach space
Keyword: rate of convergence
Keyword: semilocal convergence
Keyword: nondiscrete mathematical induction
Keyword: estimate function
MSC: 47J25
MSC: 49M15
MSC: 65G99
MSC: 65H10
MSC: 65J15
idZBL: Zbl 1274.65163
idMR: MR3035501
DOI: 10.1007/s10587-013-0008-2
.
Date available: 2013-03-01T16:09:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143174
.
Reference: [1] Amat, S., Bermúdez, C., Busquier, S., Gretay, J.: Convergence by nondiscrete mathematical induction of a two step secant's method.Rocky Mt. J. Math. 37 (2007), 359-369. Zbl 1140.65040, MR 2333375, 10.1216/rmjm/1181068756
Reference: [2] Amat, S., Busquier, S.: Third-order iterative methods under Kantorovich conditions.J. Math. Anal. Appl. 336 (2007), 243-261. Zbl 1128.65036, MR 2348504, 10.1016/j.jmaa.2007.02.052
Reference: [3] Amat, S., Busquier, S., Gutiérrez, J. M., Hernández, M. A.: On the global convergence of Chebyshev's iterative method.J. Comput. Appl. Math. 220 (2008), 17-21. Zbl 1149.65035, MR 2444150, 10.1016/j.cam.2007.07.022
Reference: [4] Argyros, I. K.: The Theory and Application of Abstract Polynomial Equations.St. Lucie/CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, USA (1998).
Reference: [5] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space.J. Math. Anal. Appl. 298 (2004), 374-397. Zbl 1061.47052, MR 2086964, 10.1016/j.jmaa.2004.04.008
Reference: [6] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations.J. Comput. Appl. Math. 169 (2004), 315-332. Zbl 1055.65066, MR 2072881, 10.1016/j.cam.2004.01.029
Reference: [7] Argyros, I. K.: Concerning the ``terra incognita'' between convergence regions of two Newton methods.Nonlinear Anal., Theory Methods Appl. 62 (2005), 179-194. Zbl 1072.65079, MR 2139363, 10.1016/j.na.2005.02.113
Reference: [8] Argyros, I. K.: Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point.Rev. Anal. Numér. Théor. Approx. 36 (2007), 123-137. Zbl 1199.65179, MR 2498828
Reference: [9] Argyros, I. K.: Computational Theory of Iterative Methods.Studies in Computational Mathematics 15. Elsevier, Amsterdam (2007). Zbl 1147.65313, MR 2356038
Reference: [10] Argyros, I. K.: On a class of Newton-like methods for solving nonlinear equations.J. Comput. Appl. Math. 228 (2009), 115-122. Zbl 1168.65349, MR 2514268, 10.1016/j.cam.2008.08.042
Reference: [11] Argyros, I. K.: A semilocal convergence analysis for directional Newton methods.Math. Comput. 80 (2011), 327-343. Zbl 1211.65057, MR 2728982, 10.1090/S0025-5718-2010-02398-1
Reference: [12] Argyros, I. K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities.Polimetrica Publisher, Milano, Italy (2009). MR 2424657
Reference: [13] Argyros, I. K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes.Surv. Math. Appl. 4 (2009), 119-132. Zbl 1205.26023, MR 2558651
Reference: [14] Argyros, I. K., Hilout, S.: Extending the Newton-Kantorovich hypothesis for solving equations.J. Comput. Appl. Math. 234 (2010), 2993-3006. Zbl 1195.65075, MR 2652146, 10.1016/j.cam.2010.04.014
Reference: [15] Argyros, I. K., Hilout, S., Tabatabai, M. A.: Mathematical Modelling with Applications in Biosciences and Engineering.Nova Publishers, New York, 2011. MR 2895345
Reference: [16] Bi, W., Wu, Q., Ren, H.: Convergence ball and error analysis of the Ostrowski-Traub method.Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 374-378. Zbl 1240.65167, MR 2679357
Reference: [17] Cătinaş, E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models.Math. Comput. 74 (2005), 291-301. Zbl 1054.65050, MR 2085412, 10.1090/S0025-5718-04-01646-1
Reference: [18] Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations.Numer. Funct. Anal. Optimization 10 (1989), 37-48. Zbl 0645.65028, MR 0978801, 10.1080/01630568908816289
Reference: [19] Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms.Springer Series in Computational Mathematics 35. Springer, Berlin (2004). Zbl 1056.65051, MR 2063044
Reference: [20] Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Romero, N., Rubio, M. J.: The Newton method: from Newton to Kantorovich.Spanish Gac. R. Soc. Mat. Esp. 13 (2010), 53-76. Zbl 1195.65001, MR 2647925
Reference: [21] Ezquerro, J. A., Hernández, M. A.: On the $R$-order of convergence of Newton's method under mild differentiability conditions.J. Comput. Appl. Math. 197 (2006), 53-61. Zbl 1106.65048, MR 2256051, 10.1016/j.cam.2005.10.023
Reference: [22] Ezquerro, J. A., Hernández, M. A.: An improvement of the region of accessibility of Chebyshev's method from Newton's method.Math. Comput. 78 (2009), 1613-1627. Zbl 1198.65096, MR 2501066, 10.1090/S0025-5718-09-02193-0
Reference: [23] Ezquerro, J. A., Hernández, M. A., Romero, N.: Newton-type methods of high order and domains of semilocal and global convergence.Appl. Math. Comput. 214 (2009), 142-154. Zbl 1173.65032, MR 2541053, 10.1016/j.amc.2009.03.072
Reference: [24] Gragg, W. B., Tapia, R. A.: Optimal error bounds for the Newton-Kantorovich theorem.SIAM J. Numer. Anal. 11 (1974), 10-13. Zbl 0284.65042, MR 0343594, 10.1137/0711002
Reference: [25] Hernández, M. A.: A modification of the classical Kantorovich conditions for Newton's method.J. Comput. Appl. Math. 137 (2001), 201-205. Zbl 0992.65057, MR 1865886, 10.1016/S0377-0427(01)00393-4
Reference: [26] Kantorovich, L. V., Akilov, G. P.: Functional Analysis. Transl. from the Russian.Pergamon Press, Oxford (1982). Zbl 0484.46003, MR 0664597
Reference: [27] Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower-dimensional formulation.ACM Trans. on Graphics. 16 (1997), 74-106. 10.1145/237748.237751
Reference: [28] Lukács, G.: The generalized inverse matrix and the surface-surface intersection problem.Theory and Practice of Geometric Modeling, Lect. Conf., Blaubeuren/FRG 1988 167-185 (1989). Zbl 0692.68076, MR 1042329
Reference: [29] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Computer Science and Applied Mathematics. Academic Press, New York (1970). Zbl 0241.65046, MR 0273810
Reference: [30] Ostrowski, A. M.: Sur la convergence et l'estimation des erreurs dans quelques procédés de résolution des équations numériques.French Gedenkwerk D. A. Grave, Moskau 213-234 (1940). Zbl 0023.35302, MR 0004377
Reference: [31] Ostrowski, A. M.: La méthode de Newton dans les espaces de Banach. (The Newton method in Banach spaces).French C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1251-1253. Zbl 0228.65041, MR 0285110
Reference: [32] Ostrowski, A. M.: Solution of Equations in Euclidean and Banach Spaces. 3rd ed. of solution of equations and systems of equations.Pure and Applied Mathematics, 9. Academic Press, New York (1973). Zbl 0304.65002, MR 0359306
Reference: [33] Păvăloiu, I.: Introduction in the Theory of Approximation of Equations Solutions.Dacia Ed. Cluj-Napoca (1976).
Reference: [34] Potra, F. A.: A characterization of the divided differences of an operator which can be represented by Riemann integrals.Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 251-253. Zbl 0523.65043, MR 0651780
Reference: [35] Potra, F. A.: An application of the induction method of V. Pták to the study of regula falsi.Apl. Mat. 26 (1981), 111-120. Zbl 0486.65038, MR 0612668
Reference: [36] Potra, F. A.: The rate of convergence of a modified Newton's process.Apl. Mat. 26 (1981), 13-17. Zbl 0486.65039, MR 0602398
Reference: [37] Potra, F. A.: An error analysis for the secant method.Numer. Math. 38 (1982), 427-445. Zbl 0465.65033, MR 0654108, 10.1007/BF01396443
Reference: [38] Potra, F. A.: On the convergence of a class of Newton-like methods.Iterative solution of nonlinear systems of equations, Proc. Meeting, Oberwolfach 1982, Lect. Notes Math. 953 125-137. Zbl 0507.65020, MR 0678615, 10.1007/BFb0069378
Reference: [39] Potra, F. A.: On the a posteriori error estimates for Newton's method.Beitr. Numer. Math. 12 (1984), 125-138. MR 0732159
Reference: [40] Potra, F. A.: On a class of iterative procedures for solving nonlinear equations in Banach spaces.Computational Mathematics, Banach Cent. Publ. 13 607-621 (1984). Zbl 0569.65042, MR 0798124, 10.4064/-13-1-607-621
Reference: [41] Potra, F. A.: Sharp error bounds for a class of Newton-like methods.Libertas Math. 5 (1985), 71-84. Zbl 0581.47050, MR 0816258
Reference: [42] Potra, F. A., Pták, V.: Sharp error bounds for Newton's process.Numer. Math. 34 (1980), 63-72. Zbl 0434.65034, MR 0560794, 10.1007/BF01463998
Reference: [43] Potra, F. A., Pták, V.: Nondiscrete induction and a double step secant method.Math. Scand. 46 (1980), 236-250. Zbl 0423.65034, MR 0591604, 10.7146/math.scand.a-11866
Reference: [44] Potra, F. A., Pták, V.: On a class of modified Newton processes.Numer. Funct. Anal. Optimization 2 (1980), 107-120. Zbl 0472.65049, MR 0580387, 10.1080/01630568008816049
Reference: [45] Potra, F. A., Pták, V.: A generalization of regula falsi.Numer. Math. 36 (1981), 333-346. Zbl 0478.65039, MR 0613073, 10.1007/BF01396659
Reference: [46] Potra, F. A., Pták, V.: Nondiscrete Induction and Iterative Processes.Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston (1984). Zbl 0549.41001, MR 0754338
Reference: [47] Proinov, P. D.: General local convergence theory for a class of iterative processes and its applications to Newton's method.J. Complexity 25 (2009), 38-62. Zbl 1158.65040, MR 2475307, 10.1016/j.jco.2008.05.006
Reference: [48] Proinov, P. D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems.J. Complexity 26 (2010), 3-42. Zbl 1185.65095, MR 2574570, 10.1016/j.jco.2009.05.001
Reference: [49] Pták, V.: Some metric aspects of the open mapping and closed graph theorems.Math. Ann. 163 (1966), 95-104. Zbl 0138.37602, MR 0192316, 10.1007/BF02052841
Reference: [50] Pták, V.: A quantitative refinement of the closed graph theorem.Czech. Math. J. 24 (1974), 503-506. Zbl 0315.46007, MR 0348431
Reference: [51] Pták, V.: A theorem of the closed graph type.Manuscr. Math. 13 (1974), 109-130. Zbl 0286.46008, MR 0348430, 10.1007/BF01411490
Reference: [52] Pták, V.: Deux théoremes de factorisation.C. R. Acad. Sci., Paris, Sér. A 278 (1974), 1091-1094. Zbl 0277.46047, MR 0341096
Reference: [53] Pták, V.: Concerning the rate of convergence of Newton's process.Commentat. Math. Univ. Carol. 16 (1975), 699-705. Zbl 0314.65023, MR 0398092
Reference: [54] Pták, V.: A modification of Newton's method.Čas. Pěst. Mat. 101 (1976), 188-194. Zbl 0328.46013, MR 0443326
Reference: [55] Pták, V.: Nondiscrete mathematical induction and iterative existence proofs.Linear Algebra Appl. 13 (1976), 223-238. Zbl 0323.46005, MR 0394119, 10.1016/0024-3795(76)90098-7
Reference: [56] Pták, V.: The rate of convergence of Newton's process.Numer. Math. 25 (1976), 279-285. Zbl 0304.65037, MR 0478587, 10.1007/BF01399416
Reference: [57] Pták, V.: Nondiscrete mathematical induction.Gen. Topol. Relat. mod. Anal. Algebra IV, Proc. 4th Prague topol. Symp. 1976, Part A, Lect. Notes Math. 609 166-178 (1977). Zbl 0367.46007, MR 0487618, 10.1007/BFb0068681
Reference: [58] Pták, V.: What should be a rate of convergence? RAIRO, Anal.Numér. 11 (1977), 279-286. MR 0474799, 10.1051/m2an/1977110302791
Reference: [59] Pták, V.: Stability of exactness.Commentat. math., spec. Vol. II, dedic. L. Orlicz (1979), 283-288. Zbl 0445.46003, MR 0552012
Reference: [60] Pták, V.: A rate of convergence.Numer. Funct. Anal. Optimization 1 (1979), 255-271. Zbl 0441.46010, MR 0537831, 10.1080/01630567908816015
Reference: [61] Pták, V.: Factorization in Banach algebras.Stud. Math. 65 (1979), 279-285. Zbl 0342.46036, MR 0567080, 10.4064/sm-65-3-279-285
Reference: [62] Ren, H., Wu, Q.: Convergence ball of a modified secant method with convergence order $1.839.\. $.Appl. Math. Comput. 188 (2007), 281-285. Zbl 1118.65044, MR 2327116, 10.1016/j.amc.2006.09.111
Reference: [63] Rheinboldt, W. C.: A unified convergence theory for a class of iterative processes.SIAM J. Numer. Anal. 5 (1968), 42-63. Zbl 0155.46701, MR 0225468, 10.1137/0705003
Reference: [64] Tapia, R. A.: The Kantorovich theorem for Newton's method.Am. Math. Mon. 78 (1971), 389-392. Zbl 0215.27404, MR 1536290, 10.2307/2316909
Reference: [65] Wu, Q., Ren, H.: A note on some new iterative methods with third-order convergence.Appl. Math. Comput. 188 (2007), 1790-1793. Zbl 1121.65052, MR 2335032, 10.1016/j.amc.2006.11.043
Reference: [66] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545-557. Zbl 0633.65049, MR 0910864, 10.1007/BF01400355
Reference: [67] Zabrejko, P. P., Nguen, D. F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates.Numer. Funct. Anal. Optimization 9 (1987), 671-684. Zbl 0627.65069, MR 0895991, 10.1080/01630568708816254
Reference: [68] Zinčenko, A. I.: Some approximate methods of solving equations with non-differentiable operators.Ukrainian Dopovidi Akad. Nauk Ukraïn. RSR (1963), 156-161. MR 0160096
.

Files

Files Size Format View
CzechMathJ_63-2013-1_8.pdf 350.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo