Previous |  Up |  Next

Article

Title: Products of non-$\sigma $-lower porous sets (English)
Author: Rmoutil, Martin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 205-217
Summary lang: English
.
Category: math
.
Summary: In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces. (English)
Keyword: topologically complete metric space
Keyword: abstract porosity
Keyword: $\sigma $-porous set
Keyword: $\sigma $-lower porous set
Keyword: Cartesian product
MSC: 28A05
MSC: 54B10
MSC: 54E35
MSC: 54G20
idZBL: Zbl 1274.28005
idMR: MR3035507
DOI: 10.1007/s10587-013-0014-4
.
Date available: 2013-03-01T16:16:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143180
.
Reference: [1] Engelking, R.: General Topology. Rev. and Compl. Ed., Sigma Series in Pure Mathematics 6.Heldermann Berlin (1989). MR 1039321
Reference: [2] Koc, M., Zajíček, L.: On Kantorovich's result on the symmetry of Dini derivatives.Commentat. Math. Univ. Carol. 51 (2010), 619-629. Zbl 1224.26021, MR 2858265
Reference: [3] Zajíček, L.: Porosity and $\sigma$-porosity.Real Anal. Exch. 13 (1987/88), 314-350. Zbl 0666.26003, MR 0943561, 10.2307/44151885
Reference: [4] Zajíček, L.: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces.Czech. Math. J. 41 (1991), 288-296. Zbl 0768.58005, MR 1105445
Reference: [5] Zajíček, L.: Products of non-$\sigma$-porous sets and Foran systems.Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. Zbl 0877.54023, MR 1428780
Reference: [6] Zajíček, L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 5 (2005), 509-534. MR 2201041, 10.1155/AAA.2005.509
Reference: [7] Zajíček, L., Zelený, M.: Inscribing closed non-$\sigma$-lower porous sets into Suslin non-$\sigma$-lower porous sets.Abstr. Appl. Anal. 3 (2005), 221-227. Zbl 1091.28001, MR 2197116, 10.1155/AAA.2005.221
Reference: [8] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.Commentat. Math. Univ. Carol. 45 (2004), 37-72. Zbl 1101.28001, MR 2076859
.

Files

Files Size Format View
CzechMathJ_63-2013-1_14.pdf 281.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo