Title:
|
$\sigma $-porosity is separably determined (English) |
Author:
|
Cúth, Marek |
Author:
|
Rmoutil, Martin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
219-234 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting. (English) |
Keyword:
|
elementary submodel |
Keyword:
|
separable reduction |
Keyword:
|
porous set |
Keyword:
|
$\sigma $-porous set |
MSC:
|
03C15 |
MSC:
|
28A05 |
MSC:
|
49J50 |
MSC:
|
54E35 |
MSC:
|
54E52 |
MSC:
|
54H05 |
MSC:
|
58C20 |
idZBL:
|
Zbl 1274.54093 |
idMR:
|
MR3035508 |
DOI:
|
10.1007/s10587-013-0015-3 |
. |
Date available:
|
2013-03-01T16:17:53Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143181 |
. |
Reference:
|
[1] Cúth, M.: Separable reduction theorems by the method of elementary submodels.Fundam. Math. 219 191-222 (2012). MR 3001239, 10.4064/fm219-3-1 |
Reference:
|
[2] Dow, A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), 17-72. Zbl 0696.03024, MR 1031969 |
Reference:
|
[3] Kruger, A. Y.: On Fréchet subdifferentials.J. Math. Sci., New York 116 (2003), 3325-3358. Zbl 1039.49021, MR 1995438, 10.1023/A:1023673105317 |
Reference:
|
[4] Kubiś, W.: Banach spaces with projectional skeletons.J. Math. Anal. Appl. 350 (2009), 758-776. Zbl 1166.46008, MR 2474810, 10.1016/j.jmaa.2008.07.006 |
Reference:
|
[5] Kunen, K.: Set Theory. An Introduction to Independence Proofs. 2nd print.Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). Zbl 0534.03026, MR 0756630 |
Reference:
|
[6] Lindenstrauss, J., Preiss, D., Tišer, J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces.Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). Zbl 1241.26001, MR 2884141 |
Reference:
|
[7] Rmoutil, M.: Products of non-$\sigma$-lower porous sets.Czech. Math. J. 63 (2013), 205-217. MR 3035507, 10.1007/s10587-013-0014-4 |
Reference:
|
[8] Zajíek, L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$.Čas. Pěst. Mat. 101 (1976), 350-359. MR 0457731 |
Reference:
|
[9] Zajíek, L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions.Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. MR 0744405 |
Reference:
|
[10] Zajíek, L.: Porosity and $\sigma$-porosity.Real Anal. Exch. 13 (1987/88), 314-350. MR 0943561, 10.2307/44151885 |
Reference:
|
[11] Zajíek, L.: Fréchet differentiability, strict differentiability and subdifferentiability.Czech. Math. J. 41 (1991), 471-489. MR 1117801 |
Reference:
|
[12] Zajíek, L.: Products of non-$\sigma$-porous sets and Foran systems.Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. MR 1428780 |
Reference:
|
[13] Zajíek, L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 5 (2005), 509-534. MR 2201041, 10.1155/AAA.2005.509 |
Reference:
|
[14] Zajíek, L., Zelený, M.: Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets.Fundam. Math. 185 (2005), 19-39. MR 2161750 |
Reference:
|
[15] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.Commentat. Math. Univ. Carol. 45 (2004), 37-72. Zbl 1101.28001, MR 2076859 |
. |