Previous |  Up |  Next

Article

Title: $\sigma $-porosity is separably determined (English)
Author: Cúth, Marek
Author: Rmoutil, Martin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 219-234
Summary lang: English
.
Category: math
.
Summary: We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting. (English)
Keyword: elementary submodel
Keyword: separable reduction
Keyword: porous set
Keyword: $\sigma $-porous set
MSC: 03C15
MSC: 28A05
MSC: 49J50
MSC: 54E35
MSC: 54E52
MSC: 54H05
MSC: 58C20
idZBL: Zbl 1274.54093
idMR: MR3035508
DOI: 10.1007/s10587-013-0015-3
.
Date available: 2013-03-01T16:17:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143181
.
Reference: [1] Cúth, M.: Separable reduction theorems by the method of elementary submodels.Fundam. Math. 219 191-222 (2012). MR 3001239, 10.4064/fm219-3-1
Reference: [2] Dow, A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), 17-72. Zbl 0696.03024, MR 1031969
Reference: [3] Kruger, A. Y.: On Fréchet subdifferentials.J. Math. Sci., New York 116 (2003), 3325-3358. Zbl 1039.49021, MR 1995438, 10.1023/A:1023673105317
Reference: [4] Kubiś, W.: Banach spaces with projectional skeletons.J. Math. Anal. Appl. 350 (2009), 758-776. Zbl 1166.46008, MR 2474810, 10.1016/j.jmaa.2008.07.006
Reference: [5] Kunen, K.: Set Theory. An Introduction to Independence Proofs. 2nd print.Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). Zbl 0534.03026, MR 0756630
Reference: [6] Lindenstrauss, J., Preiss, D., Tišer, J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces.Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). Zbl 1241.26001, MR 2884141
Reference: [7] Rmoutil, M.: Products of non-$\sigma$-lower porous sets.Czech. Math. J. 63 (2013), 205-217. MR 3035507, 10.1007/s10587-013-0014-4
Reference: [8] Zajíek, L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$.Čas. Pěst. Mat. 101 (1976), 350-359. MR 0457731
Reference: [9] Zajíek, L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions.Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. MR 0744405
Reference: [10] Zajíek, L.: Porosity and $\sigma$-porosity.Real Anal. Exch. 13 (1987/88), 314-350. MR 0943561, 10.2307/44151885
Reference: [11] Zajíek, L.: Fréchet differentiability, strict differentiability and subdifferentiability.Czech. Math. J. 41 (1991), 471-489. MR 1117801
Reference: [12] Zajíek, L.: Products of non-$\sigma$-porous sets and Foran systems.Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. MR 1428780
Reference: [13] Zajíek, L.: On $\sigma$-porous sets in abstract spaces.Abstr. Appl. Anal. 5 (2005), 509-534. MR 2201041, 10.1155/AAA.2005.509
Reference: [14] Zajíek, L., Zelený, M.: Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets.Fundam. Math. 185 (2005), 19-39. MR 2161750
Reference: [15] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.Commentat. Math. Univ. Carol. 45 (2004), 37-72. Zbl 1101.28001, MR 2076859
.

Files

Files Size Format View
CzechMathJ_63-2013-1_15.pdf 292.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo