Previous |  Up |  Next

Article

Title: On some convexity properties in the Besicovitch-Musielak-Orlicz space of almost periodic functions with Luxemburg norm (English)
Author: Bedouhene, Fazia
Author: Daoui, Amina
Author: Kourat, Hocine
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 535-547
Summary lang: English
.
Category: math
.
Summary: In this article, it is shown that geometrical properties such as local uniform convexity, mid point local uniform convexity, H-property and uniform convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz space of almost periodic functions $(\widetilde{B}^{\varphi }a.p.)$ endowed with the Luxemburg norm. (English)
Keyword: local uniform convexity
Keyword: uniform convexity in every direction
Keyword: mid point locally uniform
Keyword: H-property
Keyword: strict convexity
Keyword: approximation
Keyword: Besicovitch-Musielak-Orlicz space
Keyword: almost periodic function
MSC: 42A75
MSC: 46B20
idMR: MR3016424
.
Date available: 2013-03-02T13:38:07Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143188
.
Reference: [1] Bedouhene F., Morsli M., Smaali M.: On some equivalent geometric properties in the Besicovitch-Orlicz space of almost periodic functions with Luxemburg norm.Comment. Math. Univ. Carolin. 51 (2010), no. 1, 25–35. Zbl 1224.46018, MR 2666078
Reference: [2] Chen S.: Geometry of Orlicz spaces.Dissertationes Math. 356 (1996). Zbl 1089.46500, MR 1410390
Reference: [3] Daoui A., Morsli M., Smaali M.: Duality properties and Riesz representation theorem in the Besicovitch-Musielak-Orlicz space of almost periodic functions.to appear.
Reference: [4] Day M.M., James R.C., Swaminathan S.: Normed linear spaces that are uniformly convex in every direction.Canad. J. Math. 23 (1971), 1051–1059. Zbl 0229.46020, MR 0287285, 10.4153/CJM-1971-109-5
Reference: [5] Fan K., Glicksberg I.: Some geometric properties of the spheres in a normed linear space.Duke Math. J. 25 (1958), 553–568. Zbl 0084.33101, MR 0098976
Reference: [6] Hillmann T.R.: Besicovitch-Orlicz Spaces of Almost Periodic Functions.Real and Stochastic Analysis, Wiley, New York, 1986, pp. 119–167. Zbl 0656.46020, MR 0856581
Reference: [7] Kaminska, A.: On some convexity properties of Musielak-Orlicz spaces.Rend. Circ. Mat. Palermo (2) (1984), suppl. no. 5, 63–72. Zbl 0573.46015, MR 0781940
Reference: [8] Morsli M., Smaali M.: Characterization of the strict convexity of the Besicovitch Musielak-Orlicz space of almost periodic functions.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 443–458. Zbl 1199.46045, MR 2374126
Reference: [9] Morsli M., Smaali M.: Characterization of the uniform convexity of the Besicovitch-Musielak-Orlicz space of almost periodic functions.Comment. Math. Prace Mat.46 (2006), no. 2, 215–231. MR 2287686
Reference: [10] Megginson R.E.: An Introduction to Banach Space Theory.Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl 0910.46008, MR 1650235, 10.1007/978-1-4612-0603-3
Reference: [11] Cui,Y.T. and Z. Tao: Kadec-Klee property in Musielak-Orlicz spaces equipped with the Luxemburg norm.. Sci. Math. 1,3 (1998) 339-345. MR 1688249
Reference: [12] Musielak J.: Orlicz Spaces and Modular Spaces.Springer, Berlin-Heidelberg-New York-Tokyo, 1983. Zbl 0557.46020, MR 0724434
Reference: [13] Musielak J., Orlicz W.: On modular spaces.Studia Math. 18 (2003), no. 2, 49–65. Zbl 0111.30501, MR 0101487
Reference: [14] Wang T., Teng Y.: Complex locally uniform rotundity of Musielak-Orlicz spaces.Science in China 43 (2000), no. 2, 113–121. Zbl 1048.46031, MR 1763089, 10.1007/BF02876036
Reference: [15] Zizler V.: On some rotundity and smoothnes properties of Banach spaces.Dissertationes Math. (Rozprawy Mat.) 87 (1971), 5–33. MR 0300060
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_3.pdf 261.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo