Previous |  Up |  Next

Article

Title: Further remarks on formal power series (English)
Author: Borkowski, Marcin
Author: Maćkowiak, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 549-555
Summary lang: English
.
Category: math
.
Summary: In this paper, we present a considerable simplification of the proof of a theorem by Gan and Knox, stating a sufficient and necessary condition for existence of a composition of two formal power series. Then, we consider the behavior of such series and their (formal) derivatives at the boundary of the convergence circle, obtaining in particular a theorem of Bugajewski and Gan concerning the structure of the set of points where a formal power series is convergent with all its derivatives. (English)
Keyword: formal power series
Keyword: superposition
Keyword: boundary convergence
MSC: 13F25
MSC: 13J05
idMR: MR3016425
.
Date available: 2013-03-02T13:38:51Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143189
.
Reference: [1] Bugajewski D., Gan X.-X.: A note on formal power series.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 595–604. Zbl 1224.13025, MR 2858263
Reference: [2] Bugajewski D., Gan X.-X.: On formal Laurent series.Bull. Braz. Math. Soc., New Series 42 (2011), no. 3, 415–437. MR 2833811, 10.1007/s00574-011-0023-6
Reference: [3] Gan X.-X., Knox N.: On composition of formal power series.Int. J. Math. Math. Sci. 30 (2002), no. 12, 761–770. Zbl 0998.13010, MR 1917671, 10.1155/S0161171202107150
Reference: [4] Herzog F., Piranian, G.: Sets of convergence of Taylor series I.Duke Math. J. 16 (1949), 529–534. Zbl 0034.04806, MR 0031049, 10.1215/S0012-7094-49-01647-6
Reference: [5] Lang S.: Complex Analysis.Springer, 4th edition, New York, 1999. Zbl 0933.30001, MR 1659317
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_4.pdf 210.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo