| Title: | A poset of topologies on the set of real numbers (English) | 
| Author: | Chatyrko, Vitalij A. | 
| Author: | Hattori, Yasunao | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 54 | 
| Issue: | 2 | 
| Year: | 2013 | 
| Pages: | 189-196 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | On the set $\mathbb R$ of real numbers we consider a poset $\mathcal P_\tau(\mathbb R)$ (by inclusion) of topologies $\tau(A)$, where $A\subseteq \mathbb R$, such that $A_1\supseteq A_2$ iff $\tau(A_1)\subseteq \tau(A_2)$. The poset has the minimal element $\tau (\mathbb R)$, the Euclidean topology, and the maximal element $\tau (\emptyset)$, the Sorgenfrey topology. We are interested when two topologies $\tau_1$ and $\tau_2$ (especially, for $\tau_2 = \tau(\emptyset)$) from the poset define homeomorphic spaces $(\mathbb R, \tau_1)$ and $(\mathbb R, \tau_2)$. In particular, we prove that for a closed subset $A$ of $\mathbb R$ the space $(\mathbb R, \tau(A))$ is homeomorphic to the Sorgenfrey line $(\mathbb R, \tau(\emptyset))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb R, \tau(A)), A\subseteq \mathbb R$. (English) | 
| Keyword: | Sorgenfrey line | 
| Keyword: | poset of topologies on the set of real numbers | 
| MSC: | 54A10 | 
| idZBL: | Zbl 06221262 | 
| idMR: | MR3067703 | 
| . | 
| Date available: | 2013-06-25T12:50:05Z | 
| Last updated: | 2015-07-06 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143269 | 
| . | 
| Reference: | [AL] Aarts J.M., Lutzer D.J.: Completeness properties designed for recognizing Baire spaces.Dissertationes Math. 116 (1974), 48pp. Zbl 0296.54027, MR 0380745 | 
| Reference: | [CP] Chaber J., Pol R.: Completeness.in Encyclopedia of General Topology, Elsevier, 2004, pp. 251–254. | 
| Reference: | [ChN] Chatyrko V.A., Nyagaharwa V.: On the families of sets without the Baire property generated by Vitali sets.P-Adic Numbers Ultrametric Anal. Appl. 3 (2011), no. 2, 100–107. MR 2802033 | 
| Reference: | [E] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 | 
| Reference: | [E-J] Espelie M.S., Joseph J.E.: Compact subspaces of the Sorgenfrey line.Math. Magazine 49 (1976), 250–251. MR 0418038, 10.2307/2689459 | 
| Reference: | [H] Hattori Y.: Order and topological structures of posets of the formal balls on metric spaces.Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. Zbl 1196.54048, MR 2650132 | 
| Reference: | [vM] van Mill J.: The Infinite-Dimensional Topology of Function Spaces.Elsevier, Amsterdam, 2001. Zbl 0969.54003 | 
| Reference: | [M] Moore J.T.: Tasting the curious behavior of the Sorgenfrey line.Master of Arts Thesis, Miami University, Oxford, OH, 1996. | 
| Reference: | [L] Levine N.: Semi-open sets and semi-continuity in topological spaces.Amer. Math. Monthly 70 (1963), 36–41. Zbl 0113.16304, MR 0166752, 10.2307/2312781 | 
| Reference: | [T] Tkachuk V.V.: A $C_p$ Theory Problem Book. Topological and Function Spaces.Springer, New York, Dordrecht, Heidelberg, London, 2011. Zbl 1222.54002, MR 3024898 | 
| . |