Previous |  Up |  Next

Article

Title: Extremal pseudocompact Abelian groups: A unified treatment (English)
Author: Comfort, W. W.
Author: van Mill, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 197-217
Summary lang: English
.
Category: math
.
Summary: The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result. (English)
Keyword: pseudocompact topological group
Keyword: extremal topological group
Keyword: proper dense pseudocompact subgroup
Keyword: abelian
MSC: 22A05
MSC: 22B05
idZBL: Zbl 06221263
idMR: MR3067704
.
Date available: 2013-06-25T12:50:59Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143270
.
Reference: [1] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures.Atlantis Studies in Mathematics, 1, Atlantis Press, Paris and World Scientific Publ. Co., Hackensack, New Jersey, 2008. MR 2433295
Reference: [2] Comfort W.W.: Topological groups.in: Handbook of Set-theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), pp. 1143–1263, North-Holland, Amsterdam, 1984. Zbl 1071.54019, MR 0776643
Reference: [3] Comfort W.W.: Tampering with pseudocompact groups.Topology Proc. 28 (2004), 401–424. Zbl 1085.54028, MR 2159734
Reference: [4] Comfort W.W.: Pseudocompact groups: progress and problems.Topology Appl. 155 (2008), 172–179. Zbl 1132.54020, MR 2380255, 10.1016/j.topol.2007.09.004
Reference: [5] Comfort W.W., Jorge Galindo J.: Extremal pseudocompact topological groups.J. Pure Appl. Algebra 197 (2005), 59–81. MR 2123980, 10.1016/j.jpaa.2004.08.018
Reference: [6] Comfort W.W., Remus D.: Pseudocompact refinements of compact group topologies.Math. Z. 215 (1994), 337–346. Zbl 0790.54051, MR 1262521, 10.1007/BF02571718
Reference: [7] Comfort W.W., Gladdines H., van Mill J.: Proper pseudocompact subgroups of pseudocompact Abelian groups.in: Papers on General Topology and Applications, Annals of the New York Academy of Sciences 728 (1994), 237–247. [Note: This is Proc. June, 1992 Queens College Summer Conference on General Topology and Applications (Susan Andima, Gerald Itzkowitz, T. Yung Kong, Ralph Kopperman, Prabud Ram Misra, Lawrence Narici, and Aaron Todd, eds.).]. Zbl 0915.54029, MR 1467777
Reference: [8] Comfort W.W., van Mill J.: Concerning connected, pseudocompact Abelian groups.Topology Appl. 33 (1989), 21–45. Zbl 0698.54003, MR 1020981, 10.1016/0166-8641(89)90086-2
Reference: [9] Comfort W.W., van Mill J.: Extremal pseudocompact abelian groups are compact metrizable.Proc. Amer. Math. Soc. 135 (2007), 4039–4044. Zbl 1138.22002, MR 2341956, 10.1090/S0002-9939-07-08952-6
Reference: [10] Comfort W.W., Robertson L.C.: Proper pseudocompact extensions of compact Abelian group topologies.Proc. Amer. Math. Soc 86 (1982), 173–178. Zbl 0508.22002, MR 0663891, 10.1090/S0002-9939-1982-0663891-4
Reference: [11] Comfort W.W., Robertson L.C.: Cardinality constraints for pseudocompact and for totally dense subgroups of compact Abelian groups.Pacific J. Math. 119 (1985), 265–285. MR 0803119, 10.2140/pjm.1985.119.265
Reference: [12] Comfort W.W., Robertson L.C.: Extremal phenomena in certain classes of totally bounded groups.Dissertationes Math. 272 (1988), 48 pages; Rozprawy Mat. Polish Scientific Publishers, Warszawa, 1988. Zbl 0703.22002, MR 0959432
Reference: [13] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483–496. Zbl 0214.28502, MR 0207886, 10.2140/pjm.1966.16.483
Reference: [14] Comfort W.W., Soundararajan T.: Pseudocompact group topologies and totally dense subgroups.Pacific J. Math. 100 (1982), 61–84. Zbl 0451.22002, MR 0661441, 10.2140/pjm.1982.100.61
Reference: [15] Dikranjan D.N., Shakhmatov D.B.: Products of minimal abelian groups.Math. Z. 204 (1990), 583–603. Zbl 0685.22001, MR 1062137, 10.1007/BF02570894
Reference: [16] Dikranjan D.N., Shakhmatov D.B.: Algebraic structure of the pseudocompact groups.1991, Report 91–19, pp. 1–37; York University, Ontario, Canada.
Reference: [17] Dikranjan D., Giordano Bruno A., Milan C.: Weakly metrizable pseudocompact groups.Appl. Gen. Topol. 7 (2006), 1–39. Zbl 1127.22003, MR 2284933, 10.4995/agt.2006.1930
Reference: [18] van Douwen E.K.: The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality.Proc. Amer. Math. Soc. 80 (1980), 678–682. Zbl 0446.54011, MR 0587954, 10.1090/S0002-9939-1980-0587954-5
Reference: [19] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [20] Fuchs L.: Infinite Abelian Groups. Vol. I.Academic Press, New York, 1970. Zbl 0338.20063, MR 0255673
Reference: [21] Galindo J.: Dense pseudocompact subgroups and finer pseudocompact group topologies.Scientiae Math. Japonicae 55 (2002), 627–640. Zbl 1011.54032, MR 1901051
Reference: [22] Glicksberg I.: The representation of functionals by integrals.Duke Math. J. 19 (1952), 253–261. Zbl 0048.09004, MR 0050168, 10.1215/S0012-7094-52-01926-1
Reference: [23] Halmos P.R.: Naive Set Theory.Springer-Verlag, New York–Heidelberg–Berlin, 1960. Zbl 0287.04001, MR 0114756
Reference: [24] Hewitt E.: Rings of real-valued continuous functions I.Trans. Amer. Math. Soc. 64 (1948), 45–99. Zbl 0032.28603, MR 0026239, 10.1090/S0002-9947-1948-0026239-9
Reference: [25] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. I.Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl 0115.10603, MR 0551496
Reference: [26] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. II.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 152, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl 0830.43001, MR 0551496
Reference: [27] Kakutani S., Kodaira K.: Über das Haarsche Mass in der lokal bikompacten Gruppen.Proc. Imperial Acad. Tokyo 20 (1944), 444–450, reprinted in: Selected papers of Shizuo Kakutani volume 1, edited by Robert R. Kallman, pp. 68–74, Birkhäuser, Boston-Basel-Stuttgart, 1986. MR 0014401
Reference: [28] Mycielski J.: Some properties of connected compact groups.Colloq. Math. 5 (1958), 162–166. Zbl 0088.02802, MR 0100043
Reference: [29] Ross K.A., Stromberg K.R.: Baire sets and Baire measures.Arkiv för Matematik 6 (1967), 151–160. Zbl 0147.04501, MR 0196029, 10.1007/BF02591355
Reference: [30] de Vries J.: Pseudocompactness and the Stone-Čech compactification for topological groups.Nieuw Archief voor Wiskunde (3) 23 (1975), 35–48. Zbl 0296.22003, MR 0401978
Reference: [31] Weil A.: Sur les Espaces à Structure Uniforme et sur la Topologie Générale.Publ. Math. Univ. Strasbourg, vol. 551, Hermann & Cie, Paris, 1938. Zbl 0019.18604
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_7.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo