Article
Keywords:
extent; Lindelöf degree; $\Sigma$-space; strict $p$-space; semi-stratifiable
Summary:
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
References:
                        
[4] Gruenhage G.: 
Generalized metric spaces. Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 423–501. 
MR 0776629 | 
Zbl 0794.54034[7] Jiang S.: 
Every strict p-space is $\theta $-refinable. Topology Proc. 11 (1986), 309–316. 
MR 0945506 | 
Zbl 0637.54024[9] Juhász I.: 
Cardinal Functions in Topology. Mathematisch Centrum, Amsterdam, 1971. 
MR 0340021[10] Juhász I.: 
Cardinal Functions in Topology – Ten Years Later. Mathematisch Centrum, Amsterdam, 1980. 
MR 0576927 | 
Zbl 0479.54001[12] Nagami K.: 
$\varSigma$-spaces. Fund. Math. 65 (1969), 169–192. 
MR 0257963