Article
Keywords:
compact spaces; $G_\delta $-sets; resolvability
Summary:
It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum $X$ contains $\Delta(X)$ many pairwise disjoint dense subsets, where $\Delta(X)$ denotes the minimum size of a non-empty open set in $X$. The aim of this note is to prove the following analogous result: Every compactum $X$ contains $\Delta_\delta(X)$ many pairwise disjoint $G_\delta$-dense subsets, where $\Delta_\delta(X)$ denotes the minimum size of a non-empty $G_\delta$ set in $X$.
References:
                        
[1] Čech E., Pospíšil B.: 
Sur les espaces compacts. Publ. Fac. Sci. Univ. Masaryk 258 (1938), 1–14. 
Zbl 0019.08903[3] El'kin A.G.: 
Resolvable spaces which are not maximally resolvable. Vestnik Moskov. Univ. Ser. I Mat. Meh. 24 (1969), no. 4, 66–70. 
MR 0256331 | 
Zbl 0243.54018[4] Juhász I.: Cardinal functions in topology – 10 years later. Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980.
[5] Juhász I.: 
On the minimum character of points in compact spaces. in: Proc. Top. Conf. (Pécs, 1989), 365–371, Colloq. Math. Soc. János Bolyai, 55, North-Holland, Amsterdam, 1993. 
MR 1244377 | 
Zbl 0798.54005