Previous |  Up |  Next

Article

Title: Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem (English)
Author: Šimeček, Roman
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 3
Year: 2013
Pages: 329-346
Summary lang: English
.
Category: math
.
Summary: A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of a solution to the optimization problem. (English)
Keyword: shape optimization
Keyword: semicoercive beam problem
Keyword: unilateral foundation
MSC: 49J15
MSC: 49K15
MSC: 65K10
MSC: 74B99
MSC: 74K10
MSC: 74P05
idZBL: Zbl 06221234
idMR: MR3066824
DOI: 10.1007/s10492-013-0016-4
.
Date available: 2013-05-17T10:45:58Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143281
.
Reference: [1] Aubin, J. P.: Applied Functional Analysis, 2nd edition.Wiley-Interscience New York (2000). MR 1782330
Reference: [2] Chleboun, J.: Optimal design of an elastic beam on an elastic basis.Apl. Mat. 31 (1986), 118-140. Zbl 0606.73108, MR 0837473
Reference: [3] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Studies in Applied Mechanics, Vol. 2.Elsevier New York (1980). MR 0558764
Reference: [4] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation and Computation.SIAM Philadelphia (2003). Zbl 1020.74001, MR 1969772
Reference: [5] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design.J. Wiley & Sons Chichester (1996). MR 1419500
Reference: [6] Hlaváček, I., Bock, I., Lovíšek, J.: Optimal control of a variational inequality with applications to structural analysis. I: Optimal design of a beam with unilateral supports.Appl. Math. Optim. 11 (1984), 111-143. Zbl 0553.73082, MR 0743922, 10.1007/BF01442173
Reference: [7] Horák, J. V., Netuka, I.: Mathematical model of pseudointeractive set: 1D body on nonlinear subsoil. I. Theoretical aspects.Engineering Mechanics 14 (2007), 3311-3325.
Reference: [8] Horák, J. V., Šimeček, R.: ANSYS implementation of shape design optimization problems.ANSYS conference 2008, 16. ANSYS FEM Users' Meeting, Luhačovice, 5.--7. November 2008 SVS-FEM Brno (2008), released on CD.
Reference: [9] Kufner, A., John, O., Fučík, S.: Function Spaces.Noordhoof International Publishing/Academia Praha Nordhoof/Prague (1977). MR 0482102
Reference: [10] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies. An Introduction.Elsevier Amsterdam (1980). MR 0600655
Reference: [11] Netuka, H., Horák, J. V.: System beam-spring-foundation after two years.Proceedings, Conference ``Olomouc Days of Applied Mathematics ODAM 2007'' (2007), 18-42 Czech.
Reference: [12] Salač, P.: Shape optimization of elastic axisymmetric plate on an elastic foundation.Appl. Math. 40 (1995), 319-338. Zbl 0839.73036, MR 1331921
Reference: [13] Sysala, S.: Unilateral subsoil of Winkler's type: Semi-coercive beam problem.Appl. Math. 53 (2008), 347-379. MR 2433726, 10.1007/s10492-008-0030-0
.

Files

Files Size Format View
AplMat_58-2013-3_5.pdf 298.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo