Title:
|
The $\rm b$-weak compactness of weak Banach-Saks operators (English) |
Author:
|
Aqzzouz, Belmesnaoui |
Author:
|
Aboutafail, Othman |
Author:
|
Belghiti, Taib |
Author:
|
H'michane, Jawad |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
138 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
113-120 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact. (English) |
Keyword:
|
b-weakly compact operator |
Keyword:
|
weak Banach-Saks operator |
Keyword:
|
Banach lattice |
Keyword:
|
(b)-property |
Keyword:
|
KB-space |
MSC:
|
46A40 |
MSC:
|
46B40 |
MSC:
|
46B42 |
MSC:
|
47B07 |
MSC:
|
47B10 |
idZBL:
|
Zbl 06221242 |
idMR:
|
MR3099302 |
DOI:
|
10.21136/MB.2013.143283 |
. |
Date available:
|
2013-05-27T14:19:07Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143283 |
. |
Reference:
|
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Reprint of the 1985 original.Springer, Berlin (2006). Zbl 1098.47001, MR 2262133 |
Reference:
|
[2] Aldous, D. J.: Unconditional bases and martingales in $L_{p}(F)$.Math. Proc. Camb. Philos. Soc. 85 (1979), 117-123. Zbl 0389.46027, MR 0510406, 10.1017/S0305004100055559 |
Reference:
|
[3] Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices.Positivity 7 (2003), 135-139. Zbl 1036.46018, MR 2028377, 10.1023/A:1025840528211 |
Reference:
|
[4] Altin, B.: Some property of b-weakly compact operators.G.U. Journal of Science 18 (2005), 391-395. |
Reference:
|
[5] Aqzzouz, B., Elbour, A., Hmichane, J.: The duality problem for the class of b-weakly compact operators.Positivity 13 (2009), 683-692. Zbl 1191.47024, MR 2538515, 10.1007/s11117-008-2288-6 |
Reference:
|
[6] Aqzzouz, B., Hmichane, J.: The class of b-AM-compact operators.Quaest. Math. 36 (2013), 1-11. MR 3176020, 10.2989/16073606.2013.805869 |
Reference:
|
[7] Aqzzouz, B., Hmichane, J.: The b-weak compactness of order weakly compact operators.Complex Anal. Oper. Theory 7 (2013), 3-8. MR 3010785, 10.1007/s11785-011-0138-1 |
Reference:
|
[8] Beauzamy, B.: Propriété de Banach-Saks et modèles étalés.French Semin. Geom. des Espaces de Banach, Ec. Polytech., Cent. Math., 1977-1978, Expose No. 3, 16 pp. (1978). Zbl 0386.46017, MR 0520205 |
Reference:
|
[9] Beauzamy, B.: Propriété de Banach-Saks.Stud. Math. 66 (1980), 227-235. Zbl 0437.46061, MR 0579729, 10.4064/sm-66-3-227-235 |
Reference:
|
[10] Cheng, N., Chen, Z.-L.: b-AM-compact operators on Banach lattices.Chin. J. Eng. Math. 27 (2010). Zbl 1235.47020, MR 2777452 |
Reference:
|
[11] Flores, J., Tradacete, P.: Factorization and domination of positive Banach-Saks operators.Stud. Math. 189 (2008), 91-101. Zbl 1163.47031, MR 2443377, 10.4064/sm189-1-7 |
Reference:
|
[12] Rosenthal, H. P.: Weakly independent sequences and the weak Banach-Saks property.Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity (July 1975). |
Reference:
|
[13] Zhenglu, J., Xiaoyong, F.: The Banach-Saks property of the Banach product spaces.Arxiv: math/0702538V1 [math. FA] 19 feb 2007. |
. |