Previous |  Up |  Next

Article

Title: Why is the class number of $\mathbb Q(\root 3\of {11})$ even? (English)
Author: Lemmermeyer, F.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 2
Year: 2013
Pages: 149-163
Summary lang: English
.
Category: math
.
Summary: In this article we will describe a surprising observation that occurred in the construction of quadratic unramified extensions of a family of pure cubic number fields. Attempting to find an explanation will lead us on a magical mystery tour through the land of pure cubic number fields, Hilbert class fields, and elliptic curves. (English)
Keyword: class number
Keyword: pure cubic field
Keyword: elliptic curve
MSC: 11G05
MSC: 11R16
MSC: 11R29
idZBL: Zbl 1274.11162
idMR: MR3112361
DOI: 10.21136/MB.2013.143287
.
Date available: 2013-05-27T14:23:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143287
.
Reference: [1] Bhargava, M., Shankar, A.: Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves.arXiv:1006.1002v2.
Reference: [2] Birch, B. J., Stephens, N. M.: The parity of the rank of the Mordell-Weil group.Topology 5 (1966), 295-299. Zbl 0146.42401, MR 0201379, 10.1016/0040-9383(66)90021-8
Reference: [3] Cohen, H., Lenstra, H. W.: Heuristics on class groups of number fields.Number theory, Noordwijkerhout 1983, Proc. Journ. Arithm 33-62 Lect. Notes Math. 1068, Springer, Berlin, 1984. Zbl 0558.12002, MR 0756082
Reference: [4] Cohen, H., Martinet, J.: Étude heuristique des groupes de classes des corps de nombres.J. Reine Angew. Math. 404 (1990), 39-76 French. Zbl 0699.12016, MR 1037430
Reference: [5] Cohen, H., Martinet, J.: Heuristics on class groups: some good primes are not too good.Math. Comp. 63 (1994), 329-334. Zbl 0827.11067, MR 1226813, 10.1090/S0025-5718-1994-1226813-X
Reference: [6] Connell, I.: Elliptic Curves Handbook.(1996); see http://www.math.mcgill.ca/connell/public/ECH1/.
Reference: [7] Eisenbeis, H., Frey, G., Ommerborn, B.: Computation of the 2-rank of pure cubic fields.Math. Comp. 32 (1978), 559-569. Zbl 0385.12001, MR 0480416
Reference: [8] Hambleton, S., Lemmermeyer, F.: Arithmetic of Pell Surfaces.Acta Arith. 146 (2011), 1-12. Zbl 1211.14026, MR 2741187, 10.4064/aa146-1-1
Reference: [9] Lemmermeyer, F.: Binomial squares in pure cubic number fields.J. Théor. Nombres Bordx. 24 (2012), 691-704. MR 3010635, 10.5802/jtnb.817
Reference: [10] Lemmermeyer, F., Snyder, C.: Exercises in Class Field Theory.In preparation.
Reference: [11] Liverance, E.: A formula for the root number of a family of elliptic curves.J. Number Th. 51 (1995), 288-305. Zbl 0831.14012, MR 1326750, 10.1006/jnth.1995.1048
Reference: [12] Math Overflow: Question 70024..
Reference: [13] Monsky, P.: A remark on the class number of $\mathbb Q(p^{1/4})$.Unpublished manuscript, 1991.
Reference: [14] Monsky, P.: A result of Lemmermeyer on class numbers.arXiv 1009.3990.
Reference: [15] Silverman, J., Tate, J.: Rational Points on Elliptic Curves.Springer, New York (1992). Zbl 0752.14034, MR 1171452
Reference: [16] Soleng, R.: Homomorphisms from the group of rational points on elliptic curves to class groups of quadratic number fields.J. Number Theory 46 (1994), 214-229. Zbl 0811.14035, MR 1269253, 10.1006/jnth.1994.1013
.

Files

Files Size Format View
MathBohem_138-2013-2_4.pdf 303.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo