Previous |  Up |  Next

Article

Title: Remarks on star covering properties in pseudocompact spaces (English)
Author: Song, Yan-Kui
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 2
Year: 2013
Pages: 165-169
Summary lang: English
.
Category: math
.
Summary: Let $P$ be a topological property. A space $X$ is said to be star $P$ if whenever $\mathcal U$ is an open cover of $X$, there exists a subspace $A\subseteq X$ with property $P$ such that $X=\mathop {\rm St}(A,\mathcal U)$, where $\mathop {\rm St}(A,\mathcal U)=\bigcup \{U\in \mathcal U\colon U\cap A\neq \emptyset \}.$ In this paper, we study the relationships of star $P$ properties for $P\in \{\textrm{Lindelöf, compact, countably compact}\}$ in pseudocompact spaces by giving some examples. (English)
Keyword: Lindelöf
Keyword: star Lindelöf
Keyword: compact
Keyword: star compact
Keyword: countably compact
Keyword: star countably compact space
MSC: 54A25
MSC: 54D20
idZBL: Zbl 06221246
idMR: MR3112362
DOI: 10.21136/MB.2013.143288
.
Date available: 2013-05-27T14:24:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143288
.
Reference: [1] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties.Topology Appl. 158 (2011), 620-626. Zbl 1226.54023, MR 2765618, 10.1016/j.topol.2010.12.012
Reference: [2] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), 603-615. MR 2784032, 10.2478/s11533-011-0018-y
Reference: [3] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [4] Engelking, R.: General Topology.Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [5] Hiremath, G. R.: On star with Lindelöf center property.J. Indian Math. Soc., New Ser. 59 (1993), 227-242. Zbl 0887.54021, MR 1248966
Reference: [6] Ikenaga, S., Tani, T.: On a topological concept between countable compactness and pseudocompactness.Research Reports of Numazu Technical College 26 (1990), 139-142.
Reference: [7] Fleischman, W. M.: A new extension of countable compactness.Fundam. Math. 67 (1970), 1-9. Zbl 0194.54601, MR 0264608, 10.4064/fm-67-1-1-9
Reference: [8] Matveev, M. V.: A survey on star covering properties.Topology Atlas, preprint No. 330 (1998).
Reference: [9] Mrówka, S.: On completely regular spaces.Fundam. Math. 41 (1954), 105-106. MR 0063650, 10.4064/fm-41-1-105-106
Reference: [10] Song, Y.-K.: On $\Cal C$-starcompact spaces.Math. Bohem. 133 (2008), 259-266. Zbl 1199.54146, MR 2494780
Reference: [11] Song, Y.-K.: On $\Cal K$-starcompact spaces.Bull. Malays. Math. Sci. Soc. 30 (2007), 59-64. Zbl 1134.54314, MR 2330636
Reference: [12] Song, Y.-K.: On $\Cal L$-starcompact spaces.Czech. Math. J. 56 (2006), 781-788. Zbl 1164.54356, MR 2291775, 10.1007/s10587-006-0056-y
.

Files

Files Size Format View
MathBohem_138-2013-2_5.pdf 220.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo