[2] Batagelj V.: 
An improved inductive definition of a restricted class of triangulations of the plane. Combinatorics and Graph Theory (Warsaw, 1987), Banach Center Publ., 25, PWN, Warsaw, 1989, pp. 11–18. 
MR 1097631[5] Cavenagh N.: 
A uniqueness result for $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 47 (2006), 337–358. 
MR 2241536 | 
Zbl 1138.05007[7] Colbourn C.J., Dinitz J.H., Wanless I.M.: Latin Squares. in: The CRC Handbook of Combinatorial Designs, 2nd ed. (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, Boca Raton, FL, 2007, pp. 135–152.
[8] Drápal A., Griggs T.S.: 
Homogeneous Latin bitrades. Ars Combin. 96 (2010), 343–351. 
MR 2666820[10] Grannell M.J., Griggs T.S., Knor M.: 
Biembeddings of symmetric configurations and $3$-homogeneous Latin trades. Comment. Math. Univ. Carolin. 49 (2008), 411–420. 
MR 2490436[13] Lovász L.: 
Combinatorial Problems and Exercises. 2nd edition, North-Holland, Amsterdam, 1993. 
MR 1265492 | 
Zbl 1120.05001[15] Saaty T.L., Kainen P.L.: 
The Four-Colour Problem: Assaults and Conquests. McGraw-Hill, New York, 1977. 
MR 0480047[16] Tutte W.T. (Ed.): 
Recent Progresses in Combinatorics. Academic Press, New York, 1969, p. 343. 
MR 0250896[17] Wanless I.: 
A computer enumeration of small Latin trades. Australas. J. Combin. 39 (2007), 247–258. 
MR 2351205 | 
Zbl 1138.05009