Previous |  Up |  Next

Article

Title: Near-homogeneous spherical Latin bitrades (English)
Author: Cavenagh, Nicholas J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 313-328
Summary lang: English
.
Category: math
.
Summary: A planar Eulerian triangulation is a simple plane graph in which each face is a triangle and each vertex has even degree. Such objects are known to be equivalent to spherical Latin bitrades. (A Latin bitrade describes the difference between two Latin squares of the same order.) We give a classification in the near-regular case when each vertex is of degree $4$ or $6$ (which we call a near-homogeneous spherical Latin bitrade, or NHSLB). The classification demonstrates that any NHSLB is equal to two graphs embedded in hemispheres glued at the equator, where each hemisphere belongs to one of nine possible types, each of which may be described recursively. (English)
Keyword: planar Eulerian triangulation
Keyword: Latin bitrade
Keyword: Latin square
MSC: 05B15
MSC: 05C10
MSC: 05C45
.
Date available: 2013-06-29T06:45:03Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143302
.
Reference: [1] Altshuler A.: Construction and enumeration of regular maps on the torus.Discrete Math. 115 (1973), 201–217. Zbl 0253.05117, MR 0321797, 10.1016/S0012-365X(73)80002-0
Reference: [2] Batagelj V.: An improved inductive definition of a restricted class of triangulations of the plane.Combinatorics and Graph Theory (Warsaw, 1987), Banach Center Publ., 25, PWN, Warsaw, 1989, pp. 11–18. MR 1097631
Reference: [3] Brinkmann G., McKay B.: Guide to using plantri.version 4.1 http://cs.anu.edu.au/ bdm/plantri/.
Reference: [4] Cavenagh N.: The theory and application of Latin bitrades: a survey.Math. Slovaca 58 (2008), 691–718. Zbl 1199.05020, MR 2453264, 10.2478/s12175-008-0103-2
Reference: [5] Cavenagh N.: A uniqueness result for $3$-homogeneous Latin trades.Comment. Math. Univ. Carolin. 47 (2006), 337–358. Zbl 1138.05007, MR 2241536
Reference: [6] Cavenagh N., Lisonek P.: Planar Eulerian triangulations are equivalent to spherical Latin bitrades.J. Combin. Theory Ser. A 115 (2008), 193–197. Zbl 1131.05019, MR 2378864, 10.1016/j.jcta.2007.04.002
Reference: [7] Colbourn C.J., Dinitz J.H., Wanless I.M.: Latin Squares.in: The CRC Handbook of Combinatorial Designs, 2nd ed. (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, Boca Raton, FL, 2007, pp. 135–152.
Reference: [8] Drápal A., Griggs T.S.: Homogeneous Latin bitrades.Ars Combin. 96 (2010), 343–351. MR 2666820
Reference: [9] Goodey P.R.: Hamiltonian circuits in polytopes with even sided faces.Israel J. Math. 22 (1975), 52–56. Zbl 0317.05114, MR 0410565, 10.1007/BF02757273
Reference: [10] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of symmetric configurations and $3$-homogeneous Latin trades.Comment. Math. Univ. Carolin. 49 (2008), 411–420. MR 2490436
Reference: [11] Grünbaum B.: Convex Polytopes.John Wiley, New York, 1967. Zbl 1033.52001, MR 0226496
Reference: [12] Holton D.A., Manvel B., McKay B.D.: Hamiltonian cycles in $3$-connected bipartite planar graphs.J. Combin. Theory Ser. B 38 (1985), 279–297. MR 0796604, 10.1016/0095-8956(85)90072-3
Reference: [13] Lovász L.: Combinatorial Problems and Exercises.2nd edition, North-Holland, Amsterdam, 1993. Zbl 1120.05001, MR 1265492
Reference: [14] Negami S.: Uniqueness and faithfulness of embedding of toroidal graphs.Discrete Math. 44 (1983), 161–180. Zbl 0508.05033, MR 0689809, 10.1016/0012-365X(83)90057-2
Reference: [15] Saaty T.L., Kainen P.L.: The Four-Colour Problem: Assaults and Conquests.McGraw-Hill, New York, 1977. MR 0480047
Reference: [16] Tutte W.T. (Ed.): Recent Progresses in Combinatorics.Academic Press, New York, 1969, p. 343. MR 0250896
Reference: [17] Wanless I.: A computer enumeration of small Latin trades.Australas. J. Combin. 39 (2007), 247–258. Zbl 1138.05009, MR 2351205
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_1.pdf 330.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo