Previous |  Up |  Next

Article

Title: On McCoy condition and semicommutative rings (English)
Author: Louzari, Mohamed
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 329-337
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring and $\sigma$ an endomorphism of $R$. We give a generalization of McCoy's Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28--29] to the setting of skew polynomial rings of the form $R[x;\sigma]$. As a consequence, we will show some results on semicommutative and $\sigma$-skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied. (English)
Keyword: Armendariz rings
Keyword: McCoy rings
Keyword: Nagata extension
Keyword: semicommutative rings
Keyword: $\sigma$-skew McCoy
MSC: 16S36
MSC: 16U80
.
Date available: 2013-06-29T06:48:07Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143304
.
Reference: [1] Anderson D.D., Camillo V.: Armendariz rings and Gaussian rings.Comm. Algebra 26 (1998), no. 7, 2265–2272. Zbl 0915.13001, MR 1626606, 10.1080/00927879808826274
Reference: [2] Armendariz E.P.: A note on extensions of Baer and p.p.-rings.J. Austral. Math. Soc. 18 (1974), 470–473. Zbl 0292.16009, MR 0366979, 10.1017/S1446788700029190
Reference: [3] Annin S.: Associated primes over skew polynomials rings.Comm. Algebra 30 (2002), 2511–2528. MR 1904650, 10.1081/AGB-120003481
Reference: [4] Başer M., Harmanci A., Kwak T.K.: Generalized semicommutative rings and their extensions.Bull. Korean Math. Soc. 45 (2008), no. 2, 285–297. Zbl 1144.16025, MR 2419077, 10.4134/BKMS.2008.45.2.285
Reference: [5] Başer M., Hong C.Y., Kwak T.K.: On extended reversible rings.Algebra Colloq. 16 (2009), 37–48. Zbl 1167.16018, MR 2477108
Reference: [6] Başer M., Kwak T.K., Lee Y.: The McCoy condition on skew polynomial rings.Comm. Algebra 37 (2009), no. 11, 4026–4037. Zbl 1187.16027, MR 2573233, 10.1080/00927870802545661
Reference: [7] Clark W.E.: Twisted matrix units semigroup algebras.Duke Math. J. 34 (1967), 417–424. Zbl 0204.04502, MR 0214626, 10.1215/S0012-7094-67-03446-1
Reference: [8] Hirano Y.: On annihilator ideals of polynomial ring over a noncommutative ring.J. Pure. Appl. Algebra 168 (2002), no. 1, 45–52. MR 1879930, 10.1016/S0022-4049(01)00053-6
Reference: [9] Hong C.Y., Kim N.K., Kwak T.K.: Ore extensions of Baer and p.p.-rings.J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. Zbl 0982.16021, MR 1776431, 10.1016/S0022-4049(99)00020-1
Reference: [10] Hong C.Y., Kim N.K., Kwak T.K.: On skew Armendariz rings.Comm. Algebra 31 (2003), no. 1, 103–122. Zbl 1042.16014, MR 1969216, 10.1081/AGB-120016752
Reference: [11] Hong C.Y., Kwak T.K., Rezvi S.T.: Extensions of generalized Armendariz rings.Algebra Colloq. 13 (2006), no. 2, 253–266. MR 2208362
Reference: [12] Hong C.Y., Kim N.K., Lee Y.: Ore extensions of quasi-Baer rings.Comm. Algebra 37 (2009), no. 6, 2030–2039. Zbl 1177.16016, MR 2530760, 10.1080/00927870802304663
Reference: [13] Hong C.Y., Kim N.K., Lee Y.: Extensions of McCoy's Theorem.Glasg. Math. J. 52 (2010), 155–159. Zbl 1195.16026, MR 2587825, 10.1017/S0017089509990243
Reference: [14] Hong C.Y., Jeon Y.C., Kim N.K., Lee Y.: The McCoy condition on noncommutative rings.Comm. Algebra 39 (2011), no. 5, 1809–1825. Zbl 1231.16032, MR 2821508, 10.1080/00927872.2010.480952
Reference: [15] Huh C., Lee Y., Smoktunowics A.: Armendariz rings and semicommutative rings.Comm. Algebra 30 (2002), no. 2, 751–761. MR 1883022, 10.1081/AGB-120013179
Reference: [16] Huh C., Kim H.K., Kim N.K., Lee Y.: Basic examples and extensions of symmetric rings.J. Pure Appl. Algebra 202 (2005), 154–167. Zbl 1078.16030, MR 2163406, 10.1016/j.jpaa.2005.01.009
Reference: [17] McCoy N.H.: Annihilators in polynomial rings.Amer. Math. Monthly 64 (1957), 28–29. Zbl 0077.25903, MR 0082486, 10.2307/2309082
Reference: [18] McCoy N.H.: Remarks on divisors of zero.Amer. Math. Monthly 49 (1942), 286–295. Zbl 0060.07703, MR 0006150, 10.2307/2303094
Reference: [19] Nagata M.: Local Rings.Interscience, New York, 1962. Zbl 0386.13010, MR 0155856
Reference: [20] Nielsen P.P.: Semicommutative and McCoy condition.J. Pure Appl. Algebra 298 (2006), 134–141. MR 2215121
Reference: [21] Kim N.K., Lee Y.: Extensions of reversible rings.J. Pure Appl. Algebra 185 (2003), 207–223. Zbl 1040.16021, MR 2006427, 10.1016/S0022-4049(03)00109-9
Reference: [22] Rege M.B., Chhawchharia S.: Armendariz rings.Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), 14–17. Zbl 0960.16038, MR 1442245, 10.3792/pjaa.73.14
Reference: [23] Louzari M.: On skew polynomials over p.q.-Baer and p.p.-modules.Inter. Math. Forum 6 (2011), no. 35, 1739–1747. Zbl 1250.16023, MR 2826885
Reference: [24] Zhang C.P., Chen J.L.: $\sigma$-skew Armendariz modules and $\sigma$-semicommutative modules.Taiwanese J. Math. 12 (2008), no. 2, 473–486. MR 2402129
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_2.pdf 226.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo