Previous |  Up |  Next

Article

Title: Cocalibrated $G_2$-manifolds with Ricci flat characteristic connection (English)
Author: Friedrich, Thomas
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 1
Year: 2013
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: Any 7-dimensional cocalibrated $G_2$-manifold admits a unique connection $\nabla$ with skew symmetric torsion (see [8]). We study these manifolds under the additional condition that the $\nabla$-Ricci tensor vanish. In particular we describe their geometry in case of a maximal number of $\nabla$-parallel vector fields. (English)
Keyword: cocalibrated $G_2$-manifolds
Keyword: connections with torsion
MSC: 53C25
MSC: 81T30
idZBL: Zbl 06202721
idMR: MR3067118
.
Date available: 2013-07-18T15:22:53Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143343
.
Reference: [1] Agricola, I., Ferreira, A.C.: Einstein manifolds with skew torsion.to appear.
Reference: [2] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion.Math. Ann., 328, 2004, 711-748, Zbl 1055.53031, MR 2047649, 10.1007/s00208-003-0507-9
Reference: [3] Agricola, I., Friedrich, Th.: The Casimir operator of a metric connection with skew-symmetric torsion.J. Geom. Phys., 50, 2004, 188-204, Zbl 1080.53043, MR 2078225, 10.1016/j.geomphys.2003.11.001
Reference: [4] Agricola, I., Friedrich, Th.: A note on flat connections with antisymmetric torsion.Diff. Geom. its Appl., 28, 2010, 480-487, MR 2651537, 10.1016/j.difgeo.2010.01.004
Reference: [5] Apostolov, V., Armstrong, J., Draghici, T.: Local rigidity of certain classes of almost Kähler 4-manifolds.Math. Ann., 323, 2002, 633-666, Zbl 1032.53016, MR 1921552, 10.1007/s002080200319
Reference: [6] Apostolov, V., Draghici, T., Moroianu, A.: A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues.Internat. J. Math., 12, 2001, 769-789, Zbl 1111.53303, MR 1850671, 10.1142/S0129167X01001052
Reference: [7] Friedrich, Th.: G$_2$-manifolds with parallel characteristic torsion.J. Diff. Geom. Appl., 25, 2007, 632-648, Zbl 1141.53019, MR 2373939, 10.1016/j.difgeo.2007.06.010
Reference: [8] Friedrich, Th., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory.Asian J. Math., 6, 2002, 303-336, Zbl 1127.53304, MR 1928632
Reference: [9] Friedrich, Th., Ivanov, S.: Killing spinor equation in dimension 7 and geometry of integrable G$_2$-manifolds.J. Geom. Phys., 48, 2003, 1-11, MR 2006222, 10.1016/S0393-0440(03)00005-6
Reference: [10] Grantcharov, D., Grantcharov, G., Poon, Y.S.: Calabi-Yau connections with torsion on toric bundles.J. Differential Geom., 78, 2008, 13-32, Zbl 1171.53044, MR 2406264
Reference: [11] LeBrun, C.: Explicit self-dual metrics on CP2 # ... # CP2.J. Differential Geom., 34, 1991, 223-253, MR 1114461
.

Files

Files Size Format View
ActaOstrav_21-2013-1_1.pdf 438.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo