Previous |  Up |  Next

Article

Title: Almost Abelian rings (English)
Author: Wei, Junchao
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 1
Year: 2013
Pages: 15-30
Summary lang: English
.
Category: math
.
Summary: A ring $R$ is defined to be left almost Abelian if $ae=0$ implies $aRe=0$ for $a\in N(R)$ and $e\in E(R)$, where $E(R)$ and $N(R)$ stand respectively for the set of idempotents and the set of nilpotents of $R$. Some characterizations and properties of such rings are included. It follows that if $R$ is a left almost Abelian ring, then $R$ is $\pi $-regular if and only if $N(R)$ is an ideal of $R$ and $R/N(R)$ is regular. Moreover it is proved that (1) $R$ is an Abelian ring if and only if $R$ is a left almost Abelian left idempotent reflexive ring. (2) $R$ is strongly regular if and only if $R$ is regular and left almost Abelian. (3) A left almost Abelian clean ring is an exchange ring. (4) For a left almost Abelian ring $R$, it is an exchange $(S,2)$ ring if and only if $\mathbb Z/2\mathbb Z$ is not a homomorphic image of $R$. (English)
Keyword: left almost Abelian rings
Keyword: $\pi$-regular rings
Keyword: Abelian rings
Keyword: $(S,2)$ rings
MSC: 16A30
MSC: 16A50
MSC: 16D30
MSC: 16E50
idZBL: Zbl 06202722
idMR: MR3067119
.
Date available: 2013-07-18T15:24:27Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143346
.
Reference: [1] Badawi, A.: On abelian $\pi$-regular rings.Comm. Algebra, 25, 4, 1997, 1009-1021, Zbl 0881.16003, MR 1437658, 10.1080/00927879708825906
Reference: [2] Camillo, V.P., Yu, H.P.: Exchange rings, Units and idempotents.Comm. Algebra, 22, 12, 1994, 4737-4749, Zbl 0811.16002, MR 1285703, 10.1080/00927879408825098
Reference: [3] Chen, H.Y.: A note on potent elements, Kyungpook.Math. J., 45, 2005, 519-526, MR 2205953
Reference: [4] Chen, W.X.: On semiabelian $\pi$-regular rings.Intern. J. Math. Sci., 23, 2007, 1-10, Zbl 1152.16009, MR 2320775, 10.1155/2007/63171
Reference: [5] Ehrlich, G.: Unit regular rings.Portugal. Math., 27, 1968, 209-212, Zbl 0201.03901, MR 0266962
Reference: [6] Henriksen, M.: Two classes of rings that are generated by their units.J. Algebra, 31, 1974, 182-193, MR 0349745, 10.1016/0021-8693(74)90013-1
Reference: [7] Kim, N.K., Nam, S.B., Kim, J.Y.: On simple singular $GP$-injective modules.Comm. Algebra, 27, 5, 1999, 2087-2096, Zbl 0923.16008, MR 1683853, 10.1080/00927879908826551
Reference: [8] Lam, T.Y., Dugas, A.S.: Quasi-duo rings and stable range descent.J. Pure Appl. Algebra, 195, 2005, 243-259, Zbl 1071.16003, MR 2114274, 10.1016/j.jpaa.2004.08.011
Reference: [9] Nicholson, W.K.: Lifting idempotents and exchange rings.Trans. Amer. Math. Soc., 229, 1977, 269-278, Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [10] Nicholson, W.K.: Strongly clear rings and Fitting's Lemma.Comm. Algebra, 27, 8, 1999, 3583-3592, MR 1699586, 10.1080/00927879908826649
Reference: [11] Tuganbaev, A.: Rings close to regular.2002, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 545, Zbl 1120.16012, MR 1958361
Reference: [12] Vaserstein, L.N.: Bass' First stable range condition.J. Pure Appl. Algebra, 34, 1984, 319-330, MR 0772066, 10.1016/0022-4049(84)90044-6
Reference: [13] Wang, S.Q.: On op-idemotents.Kyungpook Math. J., 45, 2005, 171-175, MR 2160756
Reference: [14] Warfield, R.B.: A krull-Schmidt theorem for infinite sums of modules.Proc. Amer. Math. Soc., 22, 1969, 460-465, Zbl 0176.31401, MR 0242886, 10.1090/S0002-9939-1969-0242886-2
Reference: [15] Warfield, R.B.: Exchange rings and decompositions of modules.Math. Ann., 199, 1972, 31-36, Zbl 0228.16012, MR 0332893, 10.1007/BF01419573
Reference: [16] Wei, J.C.: Certain rings whose simple singular modules are nil-injective.Turk. J. Math., 32, 2008, 393-408, Zbl 1183.16004, MR 2473657
Reference: [17] Wei, J.C., Chen, J.H.: $Nil$-injective rings.Intern. Electr. Jour. Algebra, 2, 2007, 1-21, Zbl 1123.16003, MR 2320722
Reference: [18] Wu, T., Chen, P.: On finitely generated projective modules and exchange rings.Algebra Coll., 9, 4, 2002, 433-444, Zbl 1023.16002, MR 1933852
Reference: [19] Yu, H.P.: On quasi-duo rings.Glasgow Math. J., 37, 1995, 21-31, Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342
.

Files

Files Size Format View
ActaOstrav_21-2013-1_2.pdf 404.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo