Previous |  Up |  Next

Article

Title: Greedy and lazy representations in negative base systems (English)
Author: Hejda, Tomáš
Author: Masáková, Zuzana
Author: Pelantová, Edita
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 258-279
Summary lang: English
.
Category: math
.
Summary: We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained as representations in the positive base $\beta^2$ with a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In the case that $\beta$ is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings. (English)
Keyword: numeration systems
Keyword: lazy representation
Keyword: greedy representation
Keyword: negative base
Keyword: unique representation
MSC: 11A63
MSC: 11A67
MSC: 37B10
idZBL: Zbl 1275.11020
idMR: MR3085396
.
Date available: 2013-07-22T08:47:30Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143367
.
Reference: [1] Dajani, K., Kalle, Ch.: Transformations generating negative $\beta$-expansions..Integers 11B (2011), A5, 1-18. MR 3054424
Reference: [2] Dajani, K., Kraaikamp, C.: From greedy to lazy expansions and their driving dynamics..Exposition. Math. 20 (2002), 4, 315-327. Zbl 1030.11035, MR 1940010, 10.1016/S0723-0869(02)80010-X
Reference: [3] Vries, M. de, Komornik, V.: Unique expansions of real numbers..Adv. Math. 221 (2009), 2, 390-427. Zbl 1166.11007, MR 2508926, 10.1016/j.aim.2008.12.008
Reference: [4] Erdös, P., Joó, I., Komornik, V.: Characterization of the unique expansions $1=\sum^\infty_{i=1}q^{-n_i}$ and related problems..Bull. Soc. Math. France 118 (1990), 3, 377-390. MR 1078082
Reference: [5] Ito, S., Sadahiro, T.: Beta-expansions with negative bases..Integers 9 (2009), A22, 239-259. Zbl 1191.11005, MR 2534912
Reference: [6] Kalle, Ch., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units..Trans. Amer. Math. Soc. 364 (2012), 2281-2318. MR 2888207, 10.1090/S0002-9947-2012-05362-1
Reference: [7] Parry, W.: On the $\beta $-expansions of real numbers..Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. Zbl 0099.28103, MR 0142719, 10.1007/BF02020954
Reference: [8] Pedicini, M.: Greedy expansions and sets with deleted digits..Theoret. Comput. Sci. 332 (2005), 1-3, 313-336. Zbl 1080.11009, MR 2122508, 10.1016/j.tcs.2004.11.002
Reference: [9] Rényi, A.: Representations for real numbers and their ergodic properties..Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. Zbl 0079.08901, MR 0097374, 10.1007/BF02020331
Reference: [10] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers..Bull. London Math. Soc. 12 (1980), 4, 269-278. Zbl 0494.10040, MR 0576976, 10.1112/blms/12.4.269
Reference: [11] Thurston, W.: Groups, tilings, and finite state automata..AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.
.

Files

Files Size Format View
Kybernetika_49-2013-2_5.pdf 1.213Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo