Previous |  Up |  Next

Article

Title: Application of the random field theory in PET imaging - injection dose optimization (English)
Author: Dvořák, Jiří
Author: Boldyš, Jiří
Author: Skopalová, Magdaléna
Author: Bělohlávek, Otakar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 280-300
Summary lang: English
.
Category: math
.
Summary: This work presents new application of the random field theory in medical imaging. Results from both integral geometry and random field theory can be used to detect locations with significantly increased radiotracer uptake in images from positron emission tomography (PET). The assumptions needed to use these results are verified on a set of real and simulated phantom images. The proposed method of detecting activation (locations with increased radiotracer concentration) is used to quantify the quality of simulated PET images. Dependence of the quality on the injection dose (amount of applied radiotracer) and patient's body parameters is estimated. It is used to derive curves of constant quality determining the injection dose needed to achieve desired quality of the resulting images. The curves are compared with the formula currently used in medical practice. (English)
Keyword: random field theory
Keyword: Euler characteristic
Keyword: PET imaging
Keyword: PET image quality
MSC: 60G35
MSC: 60G60
MSC: 62M40
MSC: 62P10
MSC: 94A08
MSC: 94A13
idZBL: Zbl 06176038
idMR: MR3085397
.
Date available: 2013-07-22T08:49:24Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143368
.
Reference: [1] Abbey, C. K., Barrett, H. H.: Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability..J. Opt. Soc. Amer. A 18 (2001), 473-488. 10.1364/JOSAA.18.000473
Reference: [2] Accorsi, R., Karp, J. S., Surti, S.: Improved dose regimen in pediatric PET..J. Nucl. Med. 51 (2010), 293-300. 10.2967/jnumed.109.066332
Reference: [3] Adler, R. J.: The Geometry of Random Fields..Wiley, London 1981. Zbl 1182.60017, MR 0611857
Reference: [4] Adler, R. J., Taylor, J. E.: Random Fields and Geometry..Springer, New York 2007. Zbl 1149.60003, MR 2319516
Reference: [5] Boellaard, R.: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0..European J. Nucl. Med. Mol. Imaging 37 (2010), 181-200. 10.1007/s00259-009-1297-4
Reference: [6] Boldyš, J.: Monte Carlo simulation of PET images for injection dose optimization..In: Proc. III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2011. Taylor and Francis, London 2012.
Reference: [7] Brasse, D.: Correction methods for random coincidences in fully 3D whole-nody PET: Impact on data and image quality..J. Nucl. Med. 46 (2005), 859-867.
Reference: [8] Cao, J., Worsley, K. J.: Applications of random fields in human brain mapping..In: Spatial Statistics: Methodological Aspects and Applications. Springer Lecture Notes in Statistics 169 (2001), pp. 169-182. Zbl 1022.92021, 10.1007/978-1-4613-0147-9_8
Reference: [9] Danna, M.: Optimization of tracer injection for 3D $^{18}$F-FDG whole body (WB) PET studies using an acquisition-specific NEC (AS-NEC) curve generation..IEEE Nucl. Sci. Conf. R. (2004), 2615-2619.
Reference: [10] Everaert, H.: Optimal dose of $^{18}$F-FDG required for whole-body PET using an LSO PET camera..European J. Nucl. Med. Mol. Imaging 30 (2003), 1615-1619. 10.1007/s00259-003-1317-8
Reference: [11] Gifford, H. C.: Channelized Hotelling and human observer correlation for lesion detection in hepatic SPECT imaging..J. Nucl. Med. 41 (2000), 514-521.
Reference: [12] Halpern, B. S.: Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study..J. Nucl. Med. 46 (2005), 603-607.
Reference: [13] Jacobs, F.: Optimised tracer-dependent dosage cards to obtain weight-independent effective doses..European J. Nucl. Med. Mol. Imaging 32 (2005), 581-588. 10.1007/s00259-004-1708-5
Reference: [14] Jan, S.: GATE: a simulation toolkit for PET and SPECT..Phys. Med. Biol. 49 (2004), 4543-4561. 10.1088/0031-9155/49/19/007
Reference: [15] Mizuta, T.: NEC density and liver ROI S/N ratio for image quality control of whole-body FDG-PET scans: comparison with visual assessment..Mol. Imaging Biol. 11 (2009), 480-486. 10.1007/s11307-009-0214-3
Reference: [16] Powsner, R. A., Powsner, E. R.: Essential Nuclear Medicine Physics. Second edition..Wiley-Blackwell, 2006.
Reference: [17] Székely, G. J., Rizzo, M. L.: A new test for multivariate normality..J. Multivariate Anal. 93 (2005), 58-80. Zbl 1087.62070, MR 2119764, 10.1016/j.jmva.2003.12.002
Reference: [18] Strother, S. C., Casey, M. E., Hoffman, E. J.: Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts..IEEE Trans. Nucl. Sci. 37 (1990), 783-788. 10.1109/23.106715
Reference: [19] Taylor, J. E., Worsley, K. J., Gosselin, F.: Maxima of discretely sampled random fields, with an application to 'bubbles'..Biometrika 94 (2007), 1-18. Zbl 1143.62059, MR 2307898, 10.1093/biomet/asm004
Reference: [20] Thode, H. C.: Testing for Normality..Marcel Dekker, New York 2002. Zbl 1032.62040, MR 1989476
Reference: [21] Watson, C. C.: Count rate dependence of local signal-to-noise ratio in positron emission tomography..IEEE Trans. Nucl. Sci. 51 (2004), 2670-2680. 10.1109/TNS.2004.835743
Reference: [22] al., C. C. Watson et: Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans..J. Nucl. Med. 46 (2005), 1825-1834.
Reference: [23] Watson, C. C., Newport, D., Casey, M. E.: Evaluation of simulation-based scatter correction for 3D PET cardiac imaging..IEEE Trans. Nucl. Sci. 44 (1997), 90-97. 10.1109/23.554831
Reference: [24] Worsley, K. J.: A three-dimensional statistical analysis for CBF activation studies in human brain..J. Cereb. Blood Flow Metab. 12 (1992), 900-918. 10.1038/jcbfm.1992.127
Reference: [25] Worsley, K. J.: Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics..Adv. in Appl. Probab. 27 (1995), 943-959. Zbl 0836.60043, MR 1358902, 10.2307/1427930
Reference: [26] Worsley, K. J.: Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images..Ann. Statist. 23 (1995), 640-669. Zbl 0898.62120, MR 1332586, 10.1214/aos/1176324540
Reference: [27] Worsley, K. J.: Searching scale space for activation in PET images..Hum. Brain Mapp. 4 (1996), 74-90. 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M
Reference: [28] Worsley, K. J.: Detecting changes in non-isotropic images..Hum. Brain Mapp. 8 (1999), 98-101. 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F
.

Files

Files Size Format View
Kybernetika_49-2013-2_6.pdf 452.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo