Previous |  Up |  Next

Article

Title: Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group (English)
Author: Cahen, Benjamin
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 1
Year: 2013
Pages: 35-48
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak g$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak g}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal O}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group. (English)
Keyword: quasi-Hermitian Lie group
Keyword: coadjoint orbit
Keyword: stereographic projection
Keyword: Berezin quantization
Keyword: unitary holomorphic representation
Keyword: unitary group
Keyword: Jacobi group
MSC: 22E10
MSC: 22E15
MSC: 22E45
MSC: 32M05
MSC: 32M10
MSC: 32M15
MSC: 81S10
idZBL: Zbl 06285752
idMR: MR3202747
.
Date available: 2013-08-02T07:53:29Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143389
.
Reference: [1] Arnal, D., Cortet, J.-C.: Nilpotent Fourier transform and applications. Lett. Math. Phys. 9 (1985), 25–34. Zbl 0616.46041, MR 0774736, 10.1007/BF00398548
Reference: [2] Bar-Moshe, D.: A method for weight multiplicity computation based on Berezin quantization. SIGMA 5 (2009), 091, 1–12. Zbl 1188.22009, MR 2559670
Reference: [3] Bar-Moshe, D., Marinov, M. S.: Realization of compact Lie algebras in Kähler manifolds. J. Phys. A: Math. Gen. 27 (1994), 6287–6298. Zbl 0843.58056, MR 1306179, 10.1088/0305-4470/27/18/035
Reference: [4] Berezin, F. A.: Quantization. Math. USSR Izv. 8, 5 (1974), 1109–1165. Zbl 0312.53049, 10.1070/IM1974v008n05ABEH002140
Reference: [5] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR Izv. 9, 2 (1975), 341–379. 10.1070/IM1975v009n02ABEH001480
Reference: [6] Berceanu, S.: A holomorphic representation of the Jacobi algebra. Rev. Math. Phys. 18 (2006), 163–199. Zbl 1099.81036, MR 2228923, 10.1142/S0129055X06002619
Reference: [7] Berceanu, S., Gheorghe, A.: On the geometry of Siegel–Jacobi domains. Int. J. Geom. Methods Mod. Phys. 8 (2011), 1783–1798. Zbl 1250.22010, MR 2876095, 10.1142/S0219887811005920
Reference: [8] Bernatska, J., Holod, P.: Geometry and topology of coadjoint orbits of semisimple Lie groups. Mladenov, I. M., de León, M. (eds) Proceedings of the 9th international conference on ’Geometry, Integrability and Quantization’, June 8–13, 2007, Varna, Bulgarian Academy of Sciences, Sofia, 2008, 146–166. Zbl 1208.22009, MR 2436268
Reference: [9] Berndt, R., Böcherer, S.: Jacobi forms and discrete series representations of the Jacobi group. Math. Z. 204 (1990), 13–44. Zbl 0695.10024, MR 1048065, 10.1007/BF02570858
Reference: [10] Berndt, R., Schmidt, R.: Elements of the Representation Theory of the Jacobi Group. Progress in Mathematics 163, Birkhäuser Verlag, Basel, 1988. MR 1634977
Reference: [11] Cahen, B.: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65–75. Zbl 0843.22020, MR 1371298, 10.1007/BF00403252
Reference: [12] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg. In: Mathematical works, Part XV, Séminaire de Mathématique Université du Luxembourg, Luxembourg, (2004), 19–43. Zbl 1074.22005, MR 2143420
Reference: [13] Cahen, B.: Weyl quantization for semidirect products. Diff. Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [14] Cahen, B.: Multiplicities of compact Lie group representations via Berezin quantization. Mat. Vesnik 60 (2008), 295–309. Zbl 1199.22016, MR 2465811
Reference: [15] Cahen, B.: Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53, 1 (2009), 265–288. Zbl 1185.22008, MR 2584946
Reference: [16] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84. Zbl 1183.22006, MR 2549798
Reference: [17] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131
Reference: [18] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458
Reference: [19] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47 (2011), 41–58. Zbl 1240.22011, MR 2813546
Reference: [20] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova, to appear.
Reference: [21] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y
Reference: [22] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds III. Lett. Math. Phys. 30 (1994), 291–305. MR 1271090, 10.1007/BF00751065
Reference: [23] Cotton, P., Dooley, A. H.: Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164. Zbl 0882.22015, MR 1473162
Reference: [24] Folland, B.: Harmonic Analysis in Phase Space., Princeton Univ. Press, Princeton, 1989. Zbl 0682.43001, MR 0983366
Reference: [25] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454
Reference: [26] Kirillov, A. A.: Lectures on the Orbit Method, Graduate Studies in Mathematics. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175
Reference: [27] Kostant, B.: Quantization and unitary representations. In: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 87–207. Zbl 0223.53028, MR 0294568
Reference: [28] Neeb, K-H.: Holomorphy and Convexity in Lie Theory. de Gruyter Expositions in Mathematics 28, Walter de Gruyter, Berlin, New York, 2000. MR 1740617
Reference: [29] Satake, I: Algebraic Structures of Symmetric Domains. Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971. MR 0591460
Reference: [30] Skrypnik, T. V.: Coadjoint orbits of compact Lie groups and generalized stereographic projection. Ukr. Math. J. 51 (1999), 1939–1944. MR 1752044, 10.1007/BF02525136
Reference: [31] Varadarajan, V. S.: Lie groups, Lie Algebras and Their Representations. Graduate Texts in Mathematics 102, Springer-Verlag, Berlin, 1984. Zbl 0955.22500, MR 0746308
.

Files

Files Size Format View
ActaOlom_52-2013-1_3.pdf 296.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo